Ejemplo n.º 1
0
    image_size = [28,28]
    train_imgs,train_lbls,test_imgs,test_lbls = read_mnist(dim=image_size, n_train=60000, n_test=10000)
    
    ''' deep- belief net '''

    print ("\nStarting a Deep Belief Net..")

    batch_size = 20
    
    dbn = DeepBeliefNet(sizes={"vis":image_size[0]*image_size[1], "hid":500, "pen":500, "top":2000, "lbl":10},
                        image_size=image_size,
                        n_labels=10,
                        batch_size=batch_size
    )
    
    ''' greedy layer-wise training '''
    epochs = 10

    iterations = int(60000*epochs/batch_size)

    dbn.train_greedylayerwise(vis_trainset=train_imgs, lbl_trainset=train_lbls, n_iterations=iterations)

    #dbn.recognize(train_imgs, train_lbls)
    
    dbn.recognize(test_imgs, test_lbls)

    for digit in range(10):
       digit_1hot = np.zeros(shape=(1,10))
       digit_1hot[0,digit] = 1
       dbn.generate(digit_1hot, name="rbms")
Ejemplo n.º 2
0
    epochs = 1

    iterations = int(60000 * epochs / batch_size)

    dbn.train_greedylayerwise(vis_trainset=train_imgs,
                              lbl_trainset=train_lbls,
                              n_iterations=iterations)

    #dbn.recognize(train_imgs, train_lbls)

    #dbn.recognize(test_imgs, test_lbls)

    #for digit in range(10):
    #  digit_1hot = np.zeros(shape=(1,10))
    #  digit_1hot[0,digit] = 1
    # dbn.generate(digit_1hot, name="rbms")
    ''' fine-tune wake-sleep training '''

    dbn.train_wakesleep_finetune(vis_trainset=train_imgs,
                                 lbl_trainset=train_lbls,
                                 n_iterations=iterations)

    dbn.recognize(train_imgs, train_lbls)

    dbn.recognize(test_imgs, test_lbls)

    for digit in range(10):
        digit_1hot = np.zeros(shape=(1, 10))
        digit_1hot[0, digit] = 1
        dbn.generate(digit_1hot, name="dbn")
Ejemplo n.º 3
0
    dbn.train_greedylayerwise(vis_trainset=train_imgs,
                              lbl_trainset=train_lbls,
                              n_iterations=20,
                              verbose=True)

    # print("Classify training set")
    # dbn.recognize(train_imgs, train_lbls)
    #
    # print("Classify test set")
    # dbn.recognize(test_imgs, test_lbls)

    print("Image generation")
    for digit in range(10):
        digit_1hot = np.zeros(shape=(1, 10))
        digit_1hot[0, digit] = 1
        dbn.generate(digit_1hot, name="rbm")
    ''' fine-tune wake-sleep training '''

    dbn.train_wakesleep_finetune(vis_trainset=train_imgs,
                                 lbl_trainset=train_lbls,
                                 n_iterations=10)

    # dbn.recognize(train_imgs, train_lbls)

    # dbn.recognize(test_imgs, test_lbls)

    for digit in range(50):
        digit_1hot = np.zeros(shape=(1, 10))
        digit_1hot[0, 6] = 1
        dbn.generate(digit_1hot, name="dbn" + str(digit))
    #plt.legend()
    #plt.savefig("pictures/4_2_recon_losses.png")

    # for name, im, lb in [("train", train_imgs, train_lbls), ("test", test_imgs, test_lbls)]:
    #     acc = []
    #     for trials in range(10):
    #         acc.append(dbn.recognize(train_imgs, train_lbls))
    #         print (name, acc[-1])

    #     print (f"{name} & {np.mean(acc):.5f} & {np.std(acc):.5f}")

    ### DO IMAGE GEN HERE!

    labels = np.zeros([1, 10])
    labels[0, 0] = 1
    vis = dbn.generate(labels)
    vis = vis.reshape(28, 28)
    plt.clf()
    plt.subplot(4, 5, 1)
    plt.imshow(vis)
    plt.show(block=False)
    plt.pause(0.1)
    for it in range(1, 10):
        labels[0, it] = 1
        labels[0, it - 1] = 0
        print(labels)
        vis = dbn.generate(labels)
        vis = vis.reshape(28, 28)
        plt.subplot(4, 5, it + 1)
        plt.imshow(vis)
        plt.show(block=False)
Ejemplo n.º 5
0
                        batch_size=20)
    ''' greedy layer-wise training '''

    dbn.train_greedylayerwise(vis_trainset=train_imgs,
                              lbl_trainset=train_lbls,
                              n_iterations=90000)

    # dbn.recognize(train_imgs[:1000, :], train_lbls[:1000, :])

    # dbn.recognize(test_imgs, test_lbls)

    imgs = []
    for digit in range(10):
        digit_1hot = np.zeros(shape=(1, 10))
        digit_1hot[0, digit] = 1
        imgs.append(dbn.generate(digit_1hot, name="rbms",
                                 init_random_pen=True))
    plot_generated(np.array(imgs), np.array([i for i in range(10)]))

    imgs = []
    for digit in range(10):
        digit_1hot = np.zeros(shape=(1, 10))
        digit_1hot[0, digit] = 1
        imgs.append(
            dbn.generate(digit_1hot, name="rbms", init_random_pen=False))
    plot_generated(np.array(imgs),
                   np.array([i for i in range(10)]),
                   dirname='rand_img')

    # ''' fine-tune wake-sleep training '''

    # dbn.train_wakesleep_finetune(