Ejemplo n.º 1
0
def calc_hypervol(ref=[], front=[], minimize=True, **kwargs):
    """Calculate hypervolume metrics of a Pareto set, given a reference point.

    Parameters
    ----------
    ref : {1D-array-like}, shape (n_objectives, )
          The reference point.

    front : {array-like, sparse matrix}, shape (n_optimals, n_objectives)
            The Pareto optimals on which to calculate hypervolume.

    Returns
    -------
    hypevol : scalar, the calculated hypervolume between the reference point
              and the Pareto optimals.
    """

    # return distance if single objective
    if front.shape[1] == 1:
        return np.subtract(front.ravel() - ref).sum()
    elif front.shape[1] == 2:
        _fs = front[ front[:, 0].argsort()[::-1] ]
        return _calc_hypervol(ref=ref, front=_fs, minimize=minimize, **kwargs)
    else:
        pass

    return hypervolume(front, ref)
Ejemplo n.º 2
0
def test_2d():
    front = np.loadtxt(
        os.path.join(os.path.dirname(__file__), 'fixtures', 'CF7.dat'))
    ref = np.array([1.1, 1.1])
    hv1 = wfg(front, ref)
    hv2 = hv.hypervolume(front, ref)
    assert abs(hv1 - hv2) <= 1e-12
Ejemplo n.º 3
0
def calculateHypervolume(d2Points, d1Reference):
    """Returns the Hypervolume Indicator (total area contained by the Pareto Front).
    
    d2Points    -- a 2D array of locations (each row is a location)
    d1Reference -- a D-element list specifying the nadir point (e.g. [5, 5, 5, 5])
    
    Returns a float for the Hypervolume Indicator value
    """
    return hv.hypervolume(d2Points, d1Reference)
Ejemplo n.º 4
0
def my_nsga2(n,
             nbgen,
             evaluate,
             ref_point=np.array([1, 1]),
             IND_SIZE=5,
             weights=(-1.0, -1.0)):
    """NSGA-2

    NSGA-2
    :param n: taille de la population
    :param nbgen: nombre de generation 
    :param evaluate: la fonction d'évaluation
    :param ref_point: le point de référence pour le calcul de l'hypervolume
    :param IND_SIZE: la taille d'un individu
    :param weights: les poids à utiliser pour la fitness (ici ce sera (-1.0,) pour une fonction à minimiser et (1.0,) pour une fonction à maximiser)
    """

    creator.create("MaFitness", base.Fitness, weights=weights)
    creator.create("Individual", list, fitness=creator.MaFitness)

    toolbox = base.Toolbox()
    paretofront = tools.ParetoFront()

    # à compléter

    # Pour récupérer l'hypervolume, nous nous contenterons de mettre les différentes aleur dans un vecteur s_hv qui sera renvoyé par la fonction.
    pointset = [np.array(ind.fitness.getValues()) for ind in paretofront]
    s_hv = [hv.hypervolume(pointset, ref_point)]

    # Begin the generational process
    for gen in range(1, nbgen):
        if (gen % 10 == 0):
            print("+", end="", flush=True)
        else:
            print(".", end="", flush=True)

        # à completer

        pointset = [np.array(ind.fitness.getValues()) for ind in paretofront]
        s_hv.append(hv.hypervolume(pointset, ref_point))

    return population, paretofront, s_hv
Ejemplo n.º 5
0
def compute_hvolume(obj: np.ndarray, ref: np.ndarray=None) -> float:
    assert len(obj.shape) == 2

    if ref is None:
        ref = np.ones(obj.shape[1])

    valid = np.all(np.less(obj, ref), axis=1)
    obj = obj[valid]
    obj = obj[non_dominated_selection(obj)]
    hv = hypervolume(obj, ref)
    return hv