Ejemplo n.º 1
0
def main(_):

    save_model_path = os.path.join(FLAGS.output_dir, FLAGS.save_model_path)
    save_sample_path = os.path.join(FLAGS.output_dir, FLAGS.save_sample_path)
    save_log_path = os.path.join(FLAGS.output_dir, FLAGS.save_log_path)

    # create directories if not exist
    if not os.path.exists(save_model_path):
        os.mkdir(save_model_path)
    if not os.path.exists(save_log_path):
        os.mkdir(save_log_path)
    if not os.path.exists(save_sample_path) and not FLAGS.sample_to_log:
        os.mkdir(save_sample_path)

    model = DeepHeatmapsModel(
        mode='TRAIN',
        train_iter=FLAGS.train_iter,
        batch_size=FLAGS.batch_size,
        learning_rate=FLAGS.learning_rate,
        l_weight_primary=FLAGS.l_weight_primary,
        l_weight_fusion=FLAGS.l_weight_fusion,
        l_weight_upsample=FLAGS.l_weight_upsample,
        reg=FLAGS.reg,
        adam_optimizer=FLAGS.adam_optimizer,
        momentum=FLAGS.momentum,
        step=FLAGS.step,
        gamma=FLAGS.gamma,
        weight_initializer=FLAGS.weight_initializer,
        weight_initializer_std=FLAGS.weight_initializer_std,
        bias_initializer=FLAGS.bias_initializer,
        image_size=FLAGS.image_size,
        c_dim=FLAGS.c_dim,
        num_landmarks=FLAGS.num_landmarks,
        sigma=FLAGS.sigma,
        scale=FLAGS.scale,
        margin=FLAGS.margin,
        bb_type=FLAGS.bb_type,
        win_mult=FLAGS.win_mult,
        augment_basic=FLAGS.augment_basic,
        augment_texture=FLAGS.augment_texture,
        p_texture=FLAGS.p_texture,
        augment_geom=FLAGS.augment_geom,
        p_geom=FLAGS.p_geom,
        output_dir=FLAGS.output_dir,
        save_model_path=save_model_path,
        save_sample_path=save_sample_path,
        save_log_path=save_log_path,
        pre_train_path=FLAGS.pre_train_path,
        load_pretrain=FLAGS.load_pretrain,
        load_primary_only=FLAGS.load_primary_only,
        img_path=FLAGS.img_path,
        valid_data=FLAGS.valid_data,
        valid_size=FLAGS.valid_size,
        log_valid_every=FLAGS.log_valid_every,
        train_crop_dir=FLAGS.train_crop_dir,
        img_dir_ns=FLAGS.img_dir_ns,
        print_every=FLAGS.print_every,
        save_every=FLAGS.save_every,
        sample_every=FLAGS.sample_every,
        sample_grid=FLAGS.sample_grid,
        sample_to_log=FLAGS.sample_to_log,
        debug_data_size=FLAGS.debug_data_size,
        debug=FLAGS.debug,
        use_epoch_data=FLAGS.use_epoch_data,
        epoch_data_dir=FLAGS.epoch_data_dir)

    model.train()
Ejemplo n.º 2
0
    bb_type = 'init'

img_list = load_menpo_image_list(
    img_dir=data_dir,
    test_data=test_data,
    train_crop_dir=data_dir,
    img_dir_ns=data_dir,
    bb_type=bb_type,
    bb_dictionary=bb_dictionary,
    mode='TEST',
    return_transform=map_landmarks_to_original_image)

# load model
heatmap_model = DeepHeatmapsModel(mode='TEST',
                                  img_path=data_dir,
                                  test_model_path=model_path,
                                  test_data=test_data,
                                  menpo_verbose=False)

# *************** predict landmarks ***************
print("\npredicting landmarks for: " + os.path.join(data_dir, test_data))
print("\nsaving landmarks to: " + out_dir)
for i, img in enumerate(img_list):
    if i == 0:
        reuse = None
    else:
        reuse = True

    preds = heatmap_model.get_landmark_predictions(
        img_list=[img],
        pdm_models_dir=pdm_path,
Ejemplo n.º 3
0
def evaluate_heatmap_fusion_network(model_path, img_path, test_data, batch_size=10, image_size=256, margin=0.25,
                                    bb_type='gt', c_dim=3, scale=1, num_landmarks=68, debug=False,
                                    debug_data_size=20):
    t = time()
    from deep_heatmaps_model_fusion_net import DeepHeatmapsModel
    import logging
    logging.getLogger('tensorflow').disabled = True

    # load test image menpo list

    test_menpo_img_list = load_menpo_test_list(
        img_path, test_data=test_data, image_size=image_size, margin=margin, bb_type=bb_type)

    if debug:
        test_menpo_img_list = test_menpo_img_list[:debug_data_size]
        print ('\n*** FUSION NETWORK: calculating normalized mean error on: ' + test_data +
               ' set (%d images - debug mode) ***' % debug_data_size)
    else:
        print ('\n*** FUSION NETWORK: calculating normalized mean error on: ' + test_data + ' set (%d images) ***' %
               (len(test_menpo_img_list)))

    # create heatmap model

    tf.reset_default_graph()

    model = DeepHeatmapsModel(mode='TEST', batch_size=batch_size, image_size=image_size, c_dim=c_dim,
                              num_landmarks=num_landmarks, img_path=img_path, test_model_path=model_path,
                              test_data=test_data, menpo_verbose=False)

    # add placeholders
    model.add_placeholders()
    # build model
    model.build_model()
    # create loss ops
    model.create_loss_ops()

    num_batches = int(1. * len(test_menpo_img_list) / batch_size)
    if num_batches == 0:
        batch_size = len(test_menpo_img_list)
        num_batches = 1

    reminder = len(test_menpo_img_list) - num_batches * batch_size
    num_batches_reminder = num_batches + 1 * (reminder > 0)
    img_inds = np.arange(len(test_menpo_img_list))

    with tf.Session() as session:

        # load trained parameters
        saver = tf.train.Saver()
        saver.restore(session, model_path)

        print ('\nnum batches: ' + str(num_batches_reminder))

        err = []
        for j in range(num_batches):
            print ('batch %d / %d ...' % (j + 1, num_batches_reminder))
            batch_inds = img_inds[j * batch_size:(j + 1) * batch_size]

            batch_images, _, batch_landmarks_gt = load_images_landmarks(
                test_menpo_img_list, batch_inds=batch_inds, image_size=image_size,
                c_dim=c_dim, num_landmarks=num_landmarks, scale=scale)

            batch_maps_pred = session.run(model.pred_hm_f, {model.images: batch_images})

            batch_pred_landmarks = batch_heat_maps_to_landmarks(
                batch_maps_pred, batch_size=batch_size, image_size=image_size, num_landmarks=num_landmarks)

            batch_err = session.run(
                model.nme_per_image, {model.lms: batch_landmarks_gt, model.pred_lms: batch_pred_landmarks})
            err = np.hstack((err, batch_err))

        if reminder > 0:
            print ('batch %d / %d ...' % (j + 2, num_batches_reminder))
            reminder_inds = img_inds[-reminder:]

            batch_images, _, batch_landmarks_gt = load_images_landmarks(
                test_menpo_img_list, batch_inds=reminder_inds, image_size=image_size,
                c_dim=c_dim, num_landmarks=num_landmarks, scale=scale)

            batch_maps_pred = session.run(model.pred_hm_f, {model.images: batch_images})

            batch_pred_landmarks = batch_heat_maps_to_landmarks(
                batch_maps_pred, batch_size=reminder, image_size=image_size, num_landmarks=num_landmarks)

            batch_err = session.run(
                model.nme_per_image, {model.lms: batch_landmarks_gt, model.pred_lms: batch_pred_landmarks})
            err = np.hstack((err, batch_err))

        print ('\ndone!')
        print ('run time: ' + str(time() - t))

    return err
Ejemplo n.º 4
0
def main(_):

    for i, param in enumerate(params):

        test_dir = os.path.join(FLAGS.output_dir, str(param))
        if not os.path.exists(test_dir):
            os.mkdir(test_dir)

        print('\n##### RUNNING TESTS FUSION (%d/%d) #####' %
              (i + 1, len(params)))
        print('##### current directory: ' + test_dir)

        save_model_path = os.path.join(test_dir, 'model')
        save_sample_path = os.path.join(test_dir, 'sample')
        save_log_path = os.path.join(test_dir, 'logs')

        # create directories if not exist
        if not os.path.exists(save_model_path):
            os.mkdir(save_model_path)
        if not os.path.exists(save_log_path):
            os.mkdir(save_log_path)
        if not os.path.exists(save_sample_path) and not FLAGS.sample_to_log:
            os.mkdir(save_sample_path)

        tf.reset_default_graph()  # reset graph

        model = DeepHeatmapsModel(
            mode='TRAIN',
            train_iter=FLAGS.train_iter,
            batch_size=FLAGS.batch_size,
            learning_rate=param,
            l_weight_primary=FLAGS.l_weight_primary,
            l_weight_fusion=FLAGS.l_weight_fusion,
            l_weight_upsample=FLAGS.l_weight_upsample,
            reg=FLAGS.reg,
            adam_optimizer=FLAGS.adam_optimizer,
            momentum=FLAGS.momentum,
            step=FLAGS.step,
            gamma=FLAGS.gamma,
            weight_initializer=FLAGS.weight_initializer,
            weight_initializer_std=FLAGS.weight_initializer_std,
            bias_initializer=FLAGS.bias_initializer,
            image_size=FLAGS.image_size,
            c_dim=FLAGS.c_dim,
            num_landmarks=FLAGS.num_landmarks,
            sigma=FLAGS.sigma,
            scale=FLAGS.scale,
            margin=FLAGS.margin,
            bb_type=FLAGS.bb_type,
            approx_maps=FLAGS.approx_maps,
            win_mult=FLAGS.win_mult,
            augment_basic=FLAGS.augment_basic,
            basic_start=FLAGS.basic_start,
            augment_texture=FLAGS.augment_texture,
            p_texture=FLAGS.p_texture,
            augment_geom=FLAGS.augment_geom,
            p_geom=FLAGS.p_geom,
            artistic_step=FLAGS.artistic_step,
            artistic_start=FLAGS.artistic_start,
            output_dir=FLAGS.output_dir,
            save_model_path=save_model_path,
            save_sample_path=save_sample_path,
            save_log_path=save_log_path,
            test_model_path=FLAGS.test_model_path,
            pre_train_path=os.path.join(save_model_path,
                                        FLAGS.pre_train_model_name),
            load_pretrain=FLAGS.load_pretrain,
            load_primary_only=FLAGS.load_primary_only,
            img_path=FLAGS.img_path,
            test_data=FLAGS.test_data,
            valid_data=FLAGS.valid_data,
            valid_size=FLAGS.valid_size,
            log_valid_every=FLAGS.log_valid_every,
            train_crop_dir=FLAGS.train_crop_dir,
            img_dir_ns=FLAGS.img_dir_ns,
            print_every=FLAGS.print_every,
            save_every=FLAGS.save_every,
            sample_every=FLAGS.sample_every,
            sample_grid=FLAGS.sample_grid,
            sample_to_log=FLAGS.sample_to_log,
            debug_data_size=FLAGS.debug_data_size,
            debug=FLAGS.debug,
            use_epoch_data=FLAGS.use_epoch_data,
            epoch_data_dir=FLAGS.epoch_data_dir)

        model.train()
Ejemplo n.º 5
0
# directory containing test sets
data_dir = '/Users/arik/Dropbox/a_mac_thesis/artistic_faces/artistic_face_dataset/'
test_sets = ['all_AF']  # test sets to evaluate

# data_dir = '/Users/arik/Desktop/Thesis_mac/semi_art_sets/semi_art_sets_wiki_train_2/'
# test_sets = [
#     'challenging_set_aug_geom_texture',
#     'common_set_aug_geom_texture',
#     'test_set_aug_geom_texture',
#     'full_set_aug_geom_texture'
# ]

# load heatmap model
heatmap_model = DeepHeatmapsModel(mode='TEST',
                                  img_path=conv_dir,
                                  test_model_path=model_path,
                                  menpo_verbose=False,
                                  scale=1)

bb_dir = os.path.join(conv_dir, 'Bounding_Boxes')

# predict landmarks for input test sets
for i, test_data in enumerate(test_sets):

    if i == 0:
        reuse = None
    else:
        reuse = True

    out_temp = os.path.join(out_dir, test_data)
    if not os.path.exists(out_temp):