Ejemplo n.º 1
0
def test_gat_regression():
    # load datasets
    featurizer = MolGraphConvFeaturizer()
    tasks, dataset, transformers, metric = get_dataset('regression',
                                                       featurizer=featurizer)

    # initialize models
    n_tasks = len(tasks)
    model = GATModel(mode='regression', n_tasks=n_tasks, batch_size=10)

    # overfit test
    # GAT's convergence is a little slow
    model.fit(dataset, nb_epoch=300)
    scores = model.evaluate(dataset, [metric], transformers)
    assert scores['mean_absolute_error'] < 0.5
Ejemplo n.º 2
0
def test_gat_classification():
    # load datasets
    featurizer = MolGraphConvFeaturizer()
    tasks, dataset, transformers, metric = get_dataset('classification',
                                                       featurizer=featurizer)

    # initialize models
    n_tasks = len(tasks)
    model = GATModel(mode='classification',
                     n_tasks=n_tasks,
                     number_atom_features=30,
                     batch_size=10,
                     learning_rate=0.001)

    # overfit test
    model.fit(dataset, nb_epoch=100)
    scores = model.evaluate(dataset, [metric], transformers)
    assert scores['mean-roc_auc_score'] >= 0.85

    # test on a small MoleculeNet dataset
    from deepchem.molnet import load_bace_classification

    tasks, all_dataset, transformers = load_bace_classification(
        featurizer=featurizer)
    train_set, _, _ = all_dataset
    model = dc.models.GATModel(mode='classification',
                               n_tasks=len(tasks),
                               graph_attention_layers=[2],
                               n_attention_heads=1,
                               residual=False,
                               predictor_hidden_feats=2)
    model.fit(train_set, nb_epoch=1)
Ejemplo n.º 3
0
def test_gat_classification():
    # load datasets
    featurizer = MolGraphConvFeaturizer()
    tasks, dataset, transformers, metric = get_dataset('classification',
                                                       featurizer=featurizer)

    # initialize models
    n_tasks = len(tasks)
    model = GATModel(mode='classification',
                     n_tasks=n_tasks,
                     number_atom_features=30,
                     batch_size=10,
                     learning_rate=0.001)

    # overfit test
    model.fit(dataset, nb_epoch=100)
    scores = model.evaluate(dataset, [metric], transformers)
    assert scores['mean-roc_auc_score'] >= 0.85
Ejemplo n.º 4
0
def test_gat_regression():
    # load datasets
    featurizer = MolGraphConvFeaturizer()
    tasks, dataset, transformers, metric = get_dataset('regression',
                                                       featurizer=featurizer)

    # initialize models
    n_tasks = len(tasks)
    model = GATModel(mode='regression',
                     n_tasks=n_tasks,
                     number_atom_features=30,
                     batch_size=10,
                     learning_rate=0.001)

    # overfit test
    model.fit(dataset, nb_epoch=400)
    scores = model.evaluate(dataset, [metric], transformers)
    assert scores['mean_absolute_error'] < 0.5
Ejemplo n.º 5
0
def test_gat_classification():
    # load datasets
    featurizer = MolGraphConvFeaturizer()
    tasks, dataset, transformers, metric = get_dataset('regression',
                                                       featurizer=featurizer)

    # initialize models
    n_tasks = len(tasks)
    model = GATModel(n_tasks=n_tasks,
                     loss=losses.L2Loss(),
                     batch_size=4,
                     learning_rate=0.001)

    # overfit test
    model.fit(dataset, nb_epoch=100)
    scores = model.evaluate(dataset, [metric], transformers)
    # TODO: check this asseration is correct or not
    assert scores['mean_absolute_error'] < 1.0
Ejemplo n.º 6
0
def test_gat_reload():
    # load datasets
    featurizer = MolGraphConvFeaturizer()
    tasks, dataset, transformers, metric = get_dataset('classification',
                                                       featurizer=featurizer)

    # initialize models
    n_tasks = len(tasks)
    model_dir = tempfile.mkdtemp()
    model = GATModel(mode='classification',
                     n_tasks=n_tasks,
                     number_atom_features=30,
                     model_dir=model_dir,
                     batch_size=10,
                     learning_rate=0.001)

    model.fit(dataset, nb_epoch=100)
    scores = model.evaluate(dataset, [metric], transformers)
    assert scores['mean-roc_auc_score'] >= 0.85

    reloaded_model = GATModel(mode='classification',
                              n_tasks=n_tasks,
                              number_atom_features=30,
                              model_dir=model_dir,
                              batch_size=10,
                              learning_rate=0.001)
    reloaded_model.restore()

    pred_mols = ["CCCC", "CCCCCO", "CCCCC"]
    X_pred = featurizer(pred_mols)
    random_dataset = dc.data.NumpyDataset(X_pred)
    original_pred = model.predict(random_dataset)
    reload_pred = reloaded_model.predict(random_dataset)
    assert np.all(original_pred == reload_pred)