Ejemplo n.º 1
0
def test_FNN(sparse_feature_num):
    model_name = "FNN"

    sample_size = 64
    feature_dim_dict = {"sparse": {}, 'dense': []}
    for name, num in zip(["sparse", "dense"], [sparse_feature_num, sparse_feature_num]):
        if name == "sparse":
            for i in range(num):
                feature_dim_dict[name][name + '_' +
                                       str(i)] = np.random.randint(1, 10)
        else:
            for i in range(num):
                feature_dim_dict[name].append(name + '_' + str(i))

    sparse_input = [np.random.randint(0, dim, sample_size)
                    for dim in feature_dim_dict['sparse'].values()]
    dense_input = [np.random.random(sample_size)
                   for name in feature_dim_dict['dense']]
    y = np.random.randint(0, 2, sample_size)
    x = sparse_input + dense_input

    model = FNN(feature_dim_dict,  hidden_size=[32, 32], keep_prob=0.5, )
    model.compile('adam', 'binary_crossentropy',
                  metrics=['binary_crossentropy'])
    model.fit(x, y, batch_size=100, epochs=1, validation_split=0.5)

    print(model_name+" test train valid pass!")
    model.save_weights(model_name + '_weights.h5')
    model.load_weights(model_name + '_weights.h5')
    print(model_name+" test save load weight pass!")
    save_model(model, model_name + '.h5')
    model = load_model(model_name + '.h5', custom_objects)
    print(model_name + " test save load model pass!")

    print(model_name + " test pass!")
Ejemplo n.º 2
0
def test_FNN():
    name = "FNN"

    sample_size = 64
    feature_dim_dict = {
        'sparse': {
            'sparse_1': 2,
            'sparse_2': 5,
            'sparse_3': 10
        },
        'dense': ['dense_1', 'dense_2', 'dense_3']
    }
    sparse_input = [
        np.random.randint(0, dim, sample_size)
        for dim in feature_dim_dict['sparse'].values()
    ]
    dense_input = [
        np.random.random(sample_size) for name in feature_dim_dict['dense']
    ]
    y = np.random.randint(0, 2, sample_size)
    x = sparse_input + dense_input

    model = FNN(
        feature_dim_dict,
        hidden_size=[32, 32],
        keep_prob=0.5,
    )
    model.compile('adam',
                  'binary_crossentropy',
                  metrics=['binary_crossentropy'])
    model.fit(x, y, batch_size=100, epochs=1, validation_split=0.5)
    print(name + " test train valid pass!")
    model.save_weights(name + '_weights.h5')
    model.load_weights(name + '_weights.h5')
    print(name + " test save load weight pass!")
    save_model(model, name + '.h5')
    model = load_model(name + '.h5', custom_objects)
    print(name + " test save load model pass!")

    print(name + " test pass!")