Ejemplo n.º 1
0
    def detect(self, npimg, rois=None, faces=None):
        probs, feats = self.extract_features(npimg=npimg,
                                             rois=rois,
                                             faces=faces)

        if self.db is None:
            names = [[(self.class_names[idx], prop[idx]) for idx in
                      prop.argsort()[-DeepFaceConfs.get()['recognizer']['topk']:][::-1]] for prop in probs]
        else:
            # TODO
            names = []
            for feat in feats:
                scores = []
                for db_name, db_feature in self.db.items():
                    similarity = feat_distance_cosine(feat, db_feature)
                    scores.append((db_name, similarity))
                scores.sort(key=lambda x: x[1], reverse=True)
                names.append(scores)

        return {
            'output': probs,
            'feature': feats,
            'name': names
        }
Ejemplo n.º 2
0
    def test_lfw(self, set='test', model='ssdm_resnet', visualize=True):
        if set is 'train':
            pairfile = 'pairsDevTrain.txt'
        else:
            pairfile = 'pairsDevTest.txt'
        lfw_path = DeepFaceConfs.get()['dataset']['lfw']
        path = os.path.join(lfw_path, pairfile)
        with open(path, 'r') as f:
            lines = f.readlines()[1:]

        pairs = []
        for line in lines:
            elms = line.split()
            if len(elms) == 3:
                pairs.append((elms[0], int(elms[1]), elms[0], int(elms[2])))
            elif len(elms) == 4:
                pairs.append((elms[0], int(elms[1]), elms[2], int(elms[3])))
            else:
                logger.warning('line should have 3 or 4 elements, line=%s' % line)

        detec = FaceDetectorDlib.NAME
        if model == 'baseline':
            recog = FaceRecognizerVGG.NAME
            just_name = 'vgg'
        elif model == 'baseline_resnet':
            recog = FaceRecognizerResnet.NAME
            just_name = 'resnet'
        elif model == 'ssdm_resnet':
            recog = FaceRecognizerResnet.NAME
            just_name = 'resnet'
            detec = 'detector_ssd_mobilenet_v2'
        else:
            raise Exception('invalid model name=%s' % model)

        logger.info('pair length=%d' % len(pairs))
        test_result = []  # score, label(1=same)
        for name1, idx1, name2, idx2 in tqdm(pairs):
            img1_path = os.path.join(lfw_path, name1, '%s_%04d.jpg' % (name1, idx1))
            img2_path = os.path.join(lfw_path, name2, '%s_%04d.jpg' % (name2, idx2))
            img1 = cv2.imread(img1_path, cv2.IMREAD_COLOR)
            img2 = cv2.imread(img2_path, cv2.IMREAD_COLOR)

            if img1 is None:
                logger.warning('image not read, path=%s' % img1_path)
            if img2 is None:
                logger.warning('image not read, path=%s' % img2_path)

            result1 = self.run(image=img1, detector=detec, recognizer=recog, visualize=False)
            result2 = self.run(image=img2, detector=detec, recognizer=recog, visualize=False)

            if len(result1) == 0:
                logger.warning('face not detected, name=%s(%d)! %s(%d)' % (name1, idx1, name2, idx2))
                test_result.append((0.0, name1 == name2))
                continue
            if len(result2) == 0:
                logger.warning('face not detected, name=%s(%d) %s(%d)!' % (name1, idx1, name2, idx2))
                test_result.append((0.0, name1 == name2))
                continue

            feat1 = result1[0].face_feature
            feat2 = result2[0].face_feature
            similarity = feat_distance_cosine(feat1, feat2)
            test_result.append((similarity, name1 == name2))

        # calculate accuracy TODO
        accuracy = sum([label == (score > DeepFaceConfs.get()['recognizer'][just_name]['score_th']) for score, label in test_result]) / float(len(test_result))
        logger.info('accuracy=%.8f' % accuracy)

        # ROC Curve, AUC
        tps = []
        fps = []
        accuracy0 = []
        accuracy1 = []
        acc_th = []

        for th in range(0, 100, 5):
            th = th / 100.0
            tp = 0
            tn = 0
            fp = 0
            fn = 0
            for score, label in test_result:
                if score >= th and label == 1:
                    tp += 1
                elif score >= th and label == 0:
                    fp += 1
                elif score < th and label == 0:
                    tn += 1
                elif score < th and label == 1:
                    fn += 1
            tpr = tp / (tp + fn + 1e-12)
            fpr = fp / (fp + tn + 1e-12)
            tps.append(tpr)
            fps.append(fpr)
            accuracy0.append(tn / (tn + fp + 1e-12))
            accuracy1.append(tp / (tp + fn + 1e-12))
            acc_th.append(th)

        fpr, tpr, thresh = roc_curve([x[1] for x in test_result], [x[0] for x in test_result])
        fnr = 1 - tpr
        eer = fnr[np.nanargmin(np.absolute((fnr - fpr)))]
        logger.info('1-eer=%.4f' % (1.0 - eer))

        with open('./etc/test_lfw.pkl', 'rb') as f:
            results = pickle.load(f)

        if visualize in [True, 'True', 'true', 1, '1']:
            fig = plt.figure()
            a = fig.add_subplot(1, 2, 1)
            plt.title('Experiment on LFW')
            plt.plot(fpr, tpr, label='%s(%.4f)' % (model, 1 - eer))  # TODO : label

            for model_name in results:
                if model_name == model:
                    continue
                fpr_prev = results[model_name]['fpr']
                tpr_prev = results[model_name]['tpr']
                eer_prev = results[model_name]['eer']
                plt.plot(fpr_prev, tpr_prev, label='%s(%.4f)' % (model_name, 1 - eer_prev))

            plt.xlim([0.0, 1.0])
            plt.ylim([0.0, 1.05])
            plt.xlabel('False Positive Rate')
            plt.ylabel('True Positive Rate')
            a.legend()
            a.set_title('Receiver operating characteristic')

            a = fig.add_subplot(1, 2, 2)
            plt.plot(accuracy0, acc_th, label='Accuracy_diff')
            plt.plot(accuracy1, acc_th, label='Accuracy_same')
            plt.xlim([0.0, 1.0])
            plt.ylim([0.0, 1.05])
            a.legend()
            a.set_title('%s : TP, TN' % model)

            fig.savefig('./etc/roc.png', dpi=300)
            plt.show()
            plt.draw()

        with open('./etc/test_lfw.pkl', 'wb') as f:
            results[model] = {
                'fpr': fpr,
                'tpr': tpr,
                'acc_th': acc_th,
                'accuracy0': accuracy0,
                'accuracy1': accuracy1,
                'eer': eer
            }
            pickle.dump(results, f, pickle.HIGHEST_PROTOCOL)

        return 1.0 - eer