Ejemplo n.º 1
0
def fixture_dataframe():
    """
    Loads the sample ICESat-2 ATL11 data, and processes it into an suitable
    pandas.DataFrame format.
    """
    dataset: xr.Dataset = catalog.test_data.atl11_test_case.to_dask()
    dataset["utc_time"] = deltatime_to_utctime(dataarray=dataset.delta_time)

    with tempfile.TemporaryDirectory() as tmpdir:
        df: pd.DataFrame = ndarray_to_parquet(
            ndarray=dataset,
            parquetpath=os.path.join(tmpdir, "temp.parquet"),
            variables=["longitude", "latitude", "h_corr", "utc_time"],
            use_deprecated_int96_timestamps=True,
        )
    dataframe: pd.DataFrame = wide_to_long(
        df=df, stubnames=["h_corr", "utc_time"], j="cycle_number"
    )
    dataframe: pd.DataFrame = dataframe.reset_index(drop=True)

    # Mock up a dummy track1_track2 column based on the cycle_number
    dataframe["track1_track2"] = np.where(
        dataframe["cycle_number"] == 1, "0111_pt1x0222_pt2", "0333pt3x0111_pt1"
    )
    return dataframe
Ejemplo n.º 2
0
def test_deltatime_to_utctime_xarray_dataarray():
    """
    Test that converting from ICESat-2 delta_time to utc_time works on an
    xarray.DataArray, and that the dimensions are preserved in the process.
    """
    atl11_dataset: xr.Dataset = catalog.test_data.atl11_test_case.to_dask()

    utc_time: xr.DataArray = deltatime_to_utctime(
        dataarray=atl11_dataset.delta_time)

    assert utc_time.shape == (1404, 2)
    assert utc_time.dims == ("ref_pt", "cycle_number")
    assert dask.is_dask_collection(utc_time)

    utc_time = utc_time.compute()

    npt.assert_equal(
        actual=utc_time.data.min(),
        desired=np.datetime64("2019-05-19T20:53:51.039891534"),
    )
    npt.assert_equal(
        actual=np.datetime64(pd.DataFrame(utc_time.data)[0].mean()),
        desired=np.datetime64("2019-05-19 20:54:00.925868"),
    )
    npt.assert_equal(
        actual=np.datetime64(pd.DataFrame(utc_time.data)[1].mean()),
        desired=np.datetime64("2019-08-18 16:33:47.791226"),
    )
    npt.assert_equal(
        actual=utc_time.data.max(),
        desired=np.datetime64("2019-08-18T16:33:57.834610209"),
    )
Ejemplo n.º 3
0
def test_deltatime_to_utctime_pandas_series():
    """
    Test that converting from ICESat-2 delta_time to utc_time works on a
    dask.dataframe.core.Series.
    """
    atl11_dataset: xr.Dataset = catalog.test_data.atl11_test_case.to_dask()
    atl11_dataframe: pd.DataFrame = atl11_dataset.to_dataframe()

    utc_time: pd.Series = deltatime_to_utctime(
        dataarray=atl11_dataframe.delta_time)

    assert utc_time.shape == (2808, )

    npt.assert_equal(actual=utc_time.min(),
                     desired=pd.Timestamp("2019-05-19T20:53:51.039891534"))

    npt.assert_equal(
        actual=utc_time.loc[3].mean(),
        desired=pd.Timestamp("2019-05-19 20:54:00.925868800"),
    )
    npt.assert_equal(
        actual=utc_time.loc[4].mean(),
        desired=pd.Timestamp("2019-08-18 16:33:47.791226368"),
    )
    npt.assert_equal(actual=utc_time.max(),
                     desired=pd.Timestamp("2019-08-18T16:33:57.834610209"))
Ejemplo n.º 4
0
def test_deltatime_to_utctime_numpy_timedelta64():
    """
    Test that converting from ICESat-2 delta_time to utc_time works on a
    single numpy.timedelta object.
    """
    delta_time = np.timedelta64(24731275413287379, "ns")
    utc_time: np.datetime64 = deltatime_to_utctime(dataarray=delta_time)

    npt.assert_equal(actual=utc_time,
                     desired=np.datetime64("2018-10-14T05:47:55.413287379"))
Ejemplo n.º 5
0
# ### Retrieve some basic information for plots later
#
# Simply getting the number of cycles and date range
# to put into our plots later on

# %%
# Get number of ICESat-2 cycles used
num_cycles: int = len(ds.cycle_number)

# %%
# Get first and last dates to put into our plots
min_date, max_date = ("2018-10-14", "2020-04-04")
if min_date is None:
    min_delta_time = np.nanmin(
        ds.delta_time.isel(cycle_number=0).data).compute()
    min_utc_time = deepicedrain.deltatime_to_utctime(min_delta_time)
    min_date: str = np.datetime_as_string(arr=min_utc_time, unit="D")
if max_date is None:
    max_delta_time = np.nanmax(
        ds.delta_time.isel(cycle_number=-1).data).compute()
    max_utc_time = deepicedrain.deltatime_to_utctime(max_delta_time)
    max_date: str = np.datetime_as_string(arr=max_utc_time, unit="D")
print(f"Handling {num_cycles} ICESat-2 cycles from {min_date} to {max_date}")

# %%

# %% [markdown]
# # Calculate height range (h_range)
#
# A simple way of finding active subglacial lakes is to see where
# there has been a noticeably rapid change in elevation over
Ejemplo n.º 6
0
# ### Retrieve some basic information for plots later
#
# Simply getting the number of cycles and date range
# to put into our plots later on

# %%
# Get number of ICESat-2 cycles used
num_cycles: int = len(ds.cycle_number)

# %%
# Get first and last dates to put into our plots
min_date, max_date = ("2018-10-14", "2020-05-13")
if min_date is None:
    min_delta_time = np.nanmin(
        ds.delta_time.isel(cycle_number=0).data).compute()
    min_utc_time = deepicedrain.deltatime_to_utctime(min_delta_time)
    min_date: str = np.datetime_as_string(arr=min_utc_time, unit="D")
if max_date is None:
    max_delta_time = np.nanmax(
        ds.delta_time.isel(cycle_number=-1).data).compute()
    max_utc_time = deepicedrain.deltatime_to_utctime(max_delta_time)
    max_date: str = np.datetime_as_string(arr=max_utc_time, unit="D")
print(f"Handling {num_cycles} ICESat-2 cycles from {min_date} to {max_date}")

# %%

# %% [markdown]
# # Calculate height range (h_range)
#
# A simple way of finding active subglacial lakes is to see where
# there has been a noticeably rapid change in elevation over
Ejemplo n.º 7
0
# %% [markdown]
# ## Convert delta_time to utc_time
#
# To get more human-readable datetimes,
# we'll convert the delta_time attribute from the original GPS time format
# (nanoseconds since the beginning of ICESat-2 starting epoch)
# to Coordinated Universal Time (UTC).
# The reference date for the ICESat-2 Epoch is 2018 January 1st according to
# https://github.com/SmithB/pointCollection/blob/master/is2_calendar.py#L11-L15
#
# TODO: Account for [leap seconds](https://en.wikipedia.org/wiki/Leap_second)
# in the future.

# %%
ds["utc_time"] = deepicedrain.deltatime_to_utctime(dataarray=ds.delta_time)

# %% [markdown]
# ## Mask out low quality height data
#
# Good quality data has value 0, not so good is > 0.
# Look at the 'fit_quality' attribute in `ds`
# for more information on what this quality flag means.
#
# We'll mask out values other than 0 with NaN using xarray's
# [where](http://xarray.pydata.org/en/v0.15.1/indexing.html#masking-with-where).

# %%
ds["h_corr"] = ds.h_corr.where(cond=ds.fit_quality == 0)

# %%
Ejemplo n.º 8
0
# ### Retrieve some basic information for plots later
#
# Simply getting the number of cycles and date range
# to put into our plots later on

# %%
# Get number of ICESat-2 cycles used
num_cycles: int = len(ds.cycle_number)

# %%
# Get first and last dates to put into our plots
min_date, max_date = ("2018-10-14", "2020-07-16")
if min_date is None:
    min_delta_time = np.nanmin(
        ds.delta_time.isel(cycle_number=0).data).compute()
    min_utc_time = deepicedrain.deltatime_to_utctime(min_delta_time)
    min_date: str = np.datetime_as_string(arr=min_utc_time, unit="D")
if max_date is None:
    max_delta_time = np.nanmax(
        ds.delta_time.isel(cycle_number=-1).data).compute()
    max_utc_time = deepicedrain.deltatime_to_utctime(max_delta_time)
    max_date: str = np.datetime_as_string(arr=max_utc_time, unit="D")
print(f"Handling {num_cycles} ICESat-2 cycles from {min_date} to {max_date}")

# %%

# %% [markdown]
# # Calculate height range (h_range)
#
# A simple way of finding active subglacial lakes is to see where
# there has been a noticeably rapid change in elevation over