Ejemplo n.º 1
0
    def get_batch(self):
        img_idx = np.random.choice(self.num_images,
                                   size=self.batch_size,
                                   replace=True)
        batch_images = []
        batch_joints = []
        joint_ids = []
        data_items = []
        # Scale is sampled only once to transform all of the images into same size.
        scale = self.get_scale()
        while True:
            idx = np.random.choice(self.num_images)
            scale = self.get_scale()
            size = self.data[idx].im_size
            target_size = np.ceil(size[1:3] * scale).astype(int)
            if self.is_valid_size(target_size[1] * target_size[0]):
                break

        stride = self.cfg.stride
        for i in range(self.batch_size):
            data_item = self.data[img_idx[i]]

            data_items.append(data_item)
            im_file = data_item.im_path

            logging.debug('image %s', im_file)
            image = imread(os.path.join(self.cfg.project_path, im_file),
                           mode='RGB')

            if self.has_gt:
                joints = np.copy(data_item.joints)
                joint_id = [
                    person_joints[:, 0].astype(int) for person_joints in joints
                ]
                joint_points = [
                    person_joints[:, 1:3] for person_joints in joints
                ]
                joint_ids.append(joint_id)
                batch_joints.append(arr(joint_points)[0])
            batch_images.append(image)
        sm_size = np.ceil(target_size / (stride * 2)).astype(int) * 2
        assert len(batch_images) == self.batch_size
        return batch_images, joint_ids, batch_joints, data_items, sm_size, target_size
Ejemplo n.º 2
0
def GetPosesofFrames(cfg, dlc_cfg, sess, inputs, outputs, directory, framelist,
                     nframes, batchsize, rgb):
    ''' Batchwise prediction of pose for frame list in directory'''
    #from skimage.io import imread
    from deeplabcutcore.utils.auxfun_videos import imread
    print("Starting to extract posture")
    if rgb:
        im = imread(os.path.join(directory, framelist[0]), mode='RGB')
    else:
        im = imread(os.path.join(directory, framelist[0]))

    ny, nx, nc = np.shape(im)
    print("Overall # of frames: ", nframes,
          " found with (before cropping) frame dimensions: ", nx, ny)

    PredictedData = np.zeros(
        (nframes,
         dlc_cfg['num_outputs'] * 3 * len(dlc_cfg['all_joints_names'])))
    batch_ind = 0  # keeps track of which image within a batch should be written to
    batch_num = 0  # keeps track of which batch you are at
    if cfg['cropping']:
        print(
            "Cropping based on the x1 = %s x2 = %s y1 = %s y2 = %s. You can adjust the cropping coordinates in the config.yaml file."
            % (cfg['x1'], cfg['x2'], cfg['y1'], cfg['y2']))
        nx, ny = cfg['x2'] - cfg['x1'], cfg['y2'] - cfg['y1']
        if nx > 0 and ny > 0:
            pass
        else:
            raise Exception('Please check the order of cropping parameter!')
        if cfg['x1'] >= 0 and cfg['x2'] < int(
                np.shape(im)[1]) and cfg['y1'] >= 0 and cfg['y2'] < int(
                    np.shape(im)[0]):
            pass  #good cropping box
        else:
            raise Exception('Please check the boundary of cropping!')

    pbar = tqdm(total=nframes)
    counter = 0
    step = max(10, int(nframes / 100))

    if batchsize == 1:
        for counter, framename in enumerate(framelist):
            #frame=imread(os.path.join(directory,framename),mode='RGB')
            if rgb:
                im = imread(os.path.join(directory, framename), mode='RGB')
            else:
                im = imread(os.path.join(directory, framename))

            if counter % step == 0:
                pbar.update(step)

            if cfg['cropping']:
                frame = img_as_ubyte(im[cfg['y1']:cfg['y2'],
                                        cfg['x1']:cfg['x2'], :])
            else:
                frame = img_as_ubyte(im)

            pose = predict.getpose(frame, dlc_cfg, sess, inputs, outputs)
            PredictedData[counter, :] = pose.flatten()
    else:
        frames = np.empty(
            (batchsize, ny, nx, 3),
            dtype='ubyte')  # this keeps all the frames of a batch
        for counter, framename in enumerate(framelist):
            if rgb:
                im = imread(os.path.join(directory, framename), mode='RGB')
            else:
                im = imread(os.path.join(directory, framename))

            if counter % step == 0:
                pbar.update(step)

            if cfg['cropping']:
                frames[batch_ind] = img_as_ubyte(im[cfg['y1']:cfg['y2'],
                                                    cfg['x1']:cfg['x2'], :])
            else:
                frames[batch_ind] = img_as_ubyte(im)

            if batch_ind == batchsize - 1:
                pose = predict.getposeNP(frames, dlc_cfg, sess, inputs,
                                         outputs)
                PredictedData[batch_num * batchsize:(batch_num + 1) *
                              batchsize, :] = pose
                batch_ind = 0
                batch_num += 1
            else:
                batch_ind += 1

        if batch_ind > 0:  #take care of the last frames (the batch that might have been processed)
            pose = predict.getposeNP(
                frames, dlc_cfg, sess, inputs, outputs
            )  #process the whole batch (some frames might be from previous batch!)
            PredictedData[batch_num * batchsize:batch_num * batchsize +
                          batch_ind, :] = pose[:batch_ind, :]

    pbar.close()
    return PredictedData, nframes, nx, ny
Ejemplo n.º 3
0
def evaluate_network(config,
                     Shuffles=[1],
                     trainingsetindex=0,
                     plotting=None,
                     show_errors=True,
                     comparisonbodyparts="all",
                     gputouse=None,
                     rescale=False):
    """

    Evaluates the network based on the saved models at different stages of the training network.\n
    The evaluation results are stored in the .h5 and .csv file under the subdirectory 'evaluation_results'.
    Change the snapshotindex parameter in the config file to 'all' in order to evaluate all the saved models.
    Parameters
    ----------
    config : string
        Full path of the config.yaml file as a string.

    Shuffles: list, optional
        List of integers specifying the shuffle indices of the training dataset. The default is [1]

    trainingsetindex: int, optional
        Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml). This
        variable can also be set to "all".

    plotting: bool, optional
        Plots the predictions on the train and test images. The default is ``False``; if provided it must be either ``True`` or ``False``

    show_errors: bool, optional
        Display train and test errors. The default is `True``

    comparisonbodyparts: list of bodyparts, Default is "all".
        The average error will be computed for those body parts only (Has to be a subset of the body parts).

    gputouse: int, optional. Natural number indicating the number of your GPU (see number in nvidia-smi). If you do not have a GPU put None.
        See: https://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-nvidia-smi-queries

    rescale: bool, default False
        Evaluate the model at the 'global_scale' variable (as set in the test/pose_config.yaml file for a particular project). I.e. every
        image will be resized according to that scale and prediction will be compared to the resized ground truth. The error will be reported
        in pixels at rescaled to the *original* size. I.e. For a [200,200] pixel image evaluated at global_scale=.5, the predictions are calculated
        on [100,100] pixel images, compared to 1/2*ground truth and this error is then multiplied by 2!. The evaluation images are also shown for the
        original size!

    Examples
    --------
    If you do not want to plot
    >>> deeplabcutcore.evaluate_network('/analysis/project/reaching-task/config.yaml', Shuffles=[1])
    --------
    If you want to plot
    >>> deeplabcutcore.evaluate_network('/analysis/project/reaching-task/config.yaml',Shuffles=[1],True)

    """
    import os
    #import skimage.color
    #from skimage.io import imread

    from deeplabcutcore.utils.auxfun_videos import imread, imresize
    from deeplabcutcore.pose_estimation_tensorflow.nnet import predict
    from deeplabcutcore.pose_estimation_tensorflow.config import load_config
    from deeplabcutcore.pose_estimation_tensorflow.dataset.pose_dataset import data_to_input
    from deeplabcutcore.utils import auxiliaryfunctions
    import tensorflow as tf

    if 'TF_CUDNN_USE_AUTOTUNE' in os.environ:
        del os.environ[
            'TF_CUDNN_USE_AUTOTUNE']  #was potentially set during training

    tf.compat.v1.reset_default_graph()
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'  #
    #    tf.logging.set_verbosity(tf.logging.WARN)

    start_path = os.getcwd()
    # Read file path for pose_config file. >> pass it on
    cfg = auxiliaryfunctions.read_config(config)
    if gputouse is not None:  #gpu selectinon
        os.environ['CUDA_VISIBLE_DEVICES'] = str(gputouse)

    if trainingsetindex == 'all':
        TrainingFractions = cfg["TrainingFraction"]
    else:
        if trainingsetindex < len(
                cfg["TrainingFraction"]) and trainingsetindex >= 0:
            TrainingFractions = [
                cfg["TrainingFraction"][int(trainingsetindex)]
            ]
        else:
            raise Exception('Please check the trainingsetindex! ',
                            trainingsetindex,
                            ' should be an integer from 0 .. ',
                            int(len(cfg["TrainingFraction"]) - 1))

    # Loading human annotatated data
    trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
    Data = pd.read_hdf(
        os.path.join(cfg["project_path"], str(trainingsetfolder),
                     'CollectedData_' + cfg["scorer"] + '.h5'),
        'df_with_missing')

    # Get list of body parts to evaluate network for
    comparisonbodyparts = auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser(
        cfg, comparisonbodyparts)
    # Make folder for evaluation
    auxiliaryfunctions.attempttomakefolder(
        str(cfg["project_path"] + "/evaluation-results/"))
    for shuffle in Shuffles:
        for trainFraction in TrainingFractions:
            ##################################################
            # Load and setup CNN part detector
            ##################################################
            datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
                trainingsetfolder, trainFraction, shuffle, cfg)

            modelfolder = os.path.join(
                cfg["project_path"],
                str(
                    auxiliaryfunctions.GetModelFolder(trainFraction, shuffle,
                                                      cfg)))
            path_test_config = Path(modelfolder) / 'test' / 'pose_cfg.yaml'
            # Load meta data
            data, trainIndices, testIndices, trainFraction = auxiliaryfunctions.LoadMetadata(
                os.path.join(cfg["project_path"], metadatafn))

            try:
                dlc_cfg = load_config(str(path_test_config))
            except FileNotFoundError:
                raise FileNotFoundError(
                    "It seems the model for shuffle %s and trainFraction %s does not exist."
                    % (shuffle, trainFraction))

            #change batch size, if it was edited during analysis!
            dlc_cfg['batch_size'] = 1  #in case this was edited for analysis.

            #Create folder structure to store results.
            evaluationfolder = os.path.join(
                cfg["project_path"],
                str(
                    auxiliaryfunctions.GetEvaluationFolder(
                        trainFraction, shuffle, cfg)))
            auxiliaryfunctions.attempttomakefolder(evaluationfolder,
                                                   recursive=True)
            #path_train_config = modelfolder / 'train' / 'pose_cfg.yaml'

            # Check which snapshots are available and sort them by # iterations
            Snapshots = np.array([
                fn.split('.')[0]
                for fn in os.listdir(os.path.join(str(modelfolder), 'train'))
                if "index" in fn
            ])
            try:  #check if any where found?
                Snapshots[0]
            except IndexError:
                raise FileNotFoundError(
                    "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so."
                    % (shuffle, trainFraction))

            increasing_indices = np.argsort(
                [int(m.split('-')[1]) for m in Snapshots])
            Snapshots = Snapshots[increasing_indices]

            if cfg["snapshotindex"] == -1:
                snapindices = [-1]
            elif cfg["snapshotindex"] == "all":
                snapindices = range(len(Snapshots))
            elif cfg["snapshotindex"] < len(Snapshots):
                snapindices = [cfg["snapshotindex"]]
            else:
                raise ValueError(
                    "Invalid choice, only -1 (last), any integer up to last, or all (as string)!"
                )

            final_result = []

            ########################### RESCALING (to global scale)
            if rescale == True:
                scale = dlc_cfg['global_scale']
                Data = pd.read_hdf(
                    os.path.join(cfg["project_path"], str(trainingsetfolder),
                                 'CollectedData_' + cfg["scorer"] + '.h5'),
                    'df_with_missing') * scale
            else:
                scale = 1

            ##################################################
            # Compute predictions over images
            ##################################################
            for snapindex in snapindices:
                dlc_cfg['init_weights'] = os.path.join(
                    str(modelfolder), 'train', Snapshots[snapindex]
                )  #setting weights to corresponding snapshot.
                trainingsiterations = (
                    dlc_cfg['init_weights'].split(os.sep)[-1]
                ).split(
                    '-'
                )[-1]  #read how many training siterations that corresponds to.

                # Name for deeplabcut net (based on its parameters)
                DLCscorer, DLCscorerlegacy = auxiliaryfunctions.GetScorerName(
                    cfg, shuffle, trainFraction, trainingsiterations)
                print("Running ", DLCscorer, " with # of trainingiterations:",
                      trainingsiterations)
                notanalyzed, resultsfilename, DLCscorer = auxiliaryfunctions.CheckifNotEvaluated(
                    str(evaluationfolder), DLCscorer, DLCscorerlegacy,
                    Snapshots[snapindex])
                if notanalyzed:
                    # Specifying state of model (snapshot / training state)
                    sess, inputs, outputs = predict.setup_pose_prediction(
                        dlc_cfg)
                    Numimages = len(Data.index)
                    PredicteData = np.zeros(
                        (Numimages, 3 * len(dlc_cfg['all_joints_names'])))
                    print("Analyzing data...")
                    for imageindex, imagename in tqdm(enumerate(Data.index)):
                        image = imread(os.path.join(cfg['project_path'],
                                                    imagename),
                                       mode='RGB')
                        if scale != 1:
                            image = imresize(image, scale)

                        #image = skimage.color.gray2rgb(image)
                        image_batch = data_to_input(image)

                        # Compute prediction with the CNN
                        outputs_np = sess.run(outputs,
                                              feed_dict={inputs: image_batch})
                        scmap, locref = predict.extract_cnn_output(
                            outputs_np, dlc_cfg)

                        # Extract maximum scoring location from the heatmap, assume 1 person
                        pose = predict.argmax_pose_predict(
                            scmap, locref, dlc_cfg.stride)
                        PredicteData[imageindex, :] = pose.flatten(
                        )  # NOTE: thereby     cfg_test['all_joints_names'] should be same order as bodyparts!

                    sess.close()  #closes the current tf session

                    index = pd.MultiIndex.from_product(
                        [[DLCscorer], dlc_cfg['all_joints_names'],
                         ['x', 'y', 'likelihood']],
                        names=['scorer', 'bodyparts', 'coords'])

                    # Saving results
                    DataMachine = pd.DataFrame(PredicteData,
                                               columns=index,
                                               index=Data.index.values)
                    DataMachine.to_hdf(resultsfilename,
                                       'df_with_missing',
                                       format='table',
                                       mode='w')

                    print("Done and results stored for snapshot: ",
                          Snapshots[snapindex])
                    DataCombined = pd.concat([Data.T, DataMachine.T],
                                             axis=0,
                                             sort=False).T

                    RMSE, RMSEpcutoff = pairwisedistances(
                        DataCombined, cfg["scorer"], DLCscorer, cfg["pcutoff"],
                        comparisonbodyparts)
                    testerror = np.nanmean(
                        RMSE.iloc[testIndices].values.flatten())
                    trainerror = np.nanmean(
                        RMSE.iloc[trainIndices].values.flatten())
                    testerrorpcutoff = np.nanmean(
                        RMSEpcutoff.iloc[testIndices].values.flatten())
                    trainerrorpcutoff = np.nanmean(
                        RMSEpcutoff.iloc[trainIndices].values.flatten())
                    results = [
                        trainingsiterations,
                        int(100 * trainFraction), shuffle,
                        np.round(trainerror, 2),
                        np.round(testerror, 2), cfg["pcutoff"],
                        np.round(trainerrorpcutoff, 2),
                        np.round(testerrorpcutoff, 2)
                    ]
                    final_result.append(results)

                    if show_errors == True:
                        print("Results for",
                              trainingsiterations, " training iterations:",
                              int(100 * trainFraction), shuffle,
                              "train error:",
                              np.round(trainerror, 2), "pixels. Test error:",
                              np.round(testerror, 2), " pixels.")
                        print("With pcutoff of",
                              cfg["pcutoff"], " train error:",
                              np.round(trainerrorpcutoff,
                                       2), "pixels. Test error:",
                              np.round(testerrorpcutoff, 2), "pixels")
                        if scale != 1:
                            print(
                                "The predictions have been calculated for rescaled images (and rescaled ground truth). Scale:",
                                scale)
                        print(
                            "Thereby, the errors are given by the average distances between the labels by DLC and the scorer."
                        )

                    if plotting == True:
                        print("Plotting...")
                        foldername = os.path.join(
                            str(evaluationfolder), 'LabeledImages_' +
                            DLCscorer + '_' + Snapshots[snapindex])
                        auxiliaryfunctions.attempttomakefolder(foldername)
                        Plotting(
                            cfg, comparisonbodyparts, DLCscorer, trainIndices,
                            DataCombined * 1. / scale, foldername
                        )  #Rescaling coordinates to have figure in original size!

                    tf.compat.v1.reset_default_graph()
                    #print(final_result)
                else:
                    DataMachine = pd.read_hdf(resultsfilename,
                                              'df_with_missing')
                    if plotting == True:
                        DataCombined = pd.concat([Data.T, DataMachine.T],
                                                 axis=0,
                                                 sort=False).T
                        print(
                            "Plotting...(attention scale might be inconsistent in comparison to when data was analyzed; i.e. if you used rescale)"
                        )
                        foldername = os.path.join(
                            str(evaluationfolder), 'LabeledImages_' +
                            DLCscorer + '_' + Snapshots[snapindex])
                        auxiliaryfunctions.attempttomakefolder(foldername)
                        Plotting(cfg, comparisonbodyparts, DLCscorer,
                                 trainIndices, DataCombined * 1. / scale,
                                 foldername)

            if len(final_result) > 0:  #Only append if results were calculated
                make_results_file(final_result, evaluationfolder, DLCscorer)
                print(
                    "The network is evaluated and the results are stored in the subdirectory 'evaluation_results'."
                )
                print(
                    "If it generalizes well, choose the best model for prediction and update the config file with the appropriate index for the 'snapshotindex'.\nUse the function 'analyze_video' to make predictions on new videos."
                )
                print(
                    "Otherwise consider retraining the network (see DeepLabCut workflow Fig 2)"
                )

    #returning to intial folder
    os.chdir(str(start_path))
Ejemplo n.º 4
0
    def make_batch(self, data_item, scale, mirror):

        im_file = data_item.im_path
        logging.debug('image %s', im_file)
        logging.debug('mirror %r', mirror)

        #print(im_file, os.getcwd())
        #print(self.cfg.project_path)
        image = imread(os.path.join(self.cfg.project_path, im_file),
                       mode='RGB')

        if self.has_gt:
            joints = np.copy(data_item.joints)

        if self.cfg.crop:  #adapted cropping for DLC
            if np.random.rand() < self.cfg.cropratio:
                #1. get center of joints
                j = np.random.randint(
                    np.shape(joints)[1])  #pick a random joint
                # draw random crop dimensions & subtract joint points
                #print(joints,j,'ahah')
                joints, image = CropImage(joints, image, joints[0, j, 1],
                                          joints[0, j, 2], self.cfg)

                #if self.has_gt:
                #    joints[0,:, 1] -= x0
                #    joints[0,:, 2] -= y0
                '''
                print(joints)
                import matplotlib.pyplot as plt
                plt.clf()
                plt.imshow(image)
                plt.plot(joints[0,:,1],joints[0,:,2],'.')
                plt.savefig("abc"+str(np.random.randint(int(1e6)))+".png")
                '''
            else:
                pass  #no cropping!

        img = imresize(image, scale) if scale != 1 else image
        scaled_img_size = arr(img.shape[0:2])

        if mirror:
            img = np.fliplr(img)

        batch = {Batch.inputs: img}

        if self.has_gt:
            stride = self.cfg.stride

            if mirror:
                joints = [
                    self.mirror_joints(person_joints, self.symmetric_joints,
                                       image.shape[1])
                    for person_joints in joints
                ]

            sm_size = np.ceil(scaled_img_size / (stride * 2)).astype(int) * 2

            scaled_joints = [
                person_joints[:, 1:3] * scale for person_joints in joints
            ]

            joint_id = [
                person_joints[:, 0].astype(int) for person_joints in joints
            ]
            part_score_targets, part_score_weights, locref_targets, locref_mask = self.compute_target_part_scoremap(
                joint_id, scaled_joints, data_item, sm_size, scale)

            batch.update({
                Batch.part_score_targets: part_score_targets,
                Batch.part_score_weights: part_score_weights,
                Batch.locref_targets: locref_targets,
                Batch.locref_mask: locref_mask
            })

        batch = {key: data_to_input(data) for (key, data) in batch.items()}

        batch[Batch.data_item] = data_item

        return batch