Ejemplo n.º 1
0
def test_merge_outlines(metadata, dataframe, out_dir):
    metadata.loadSingle(os.path.join(out_dir, 'test.csv'), 'default', int)
    outlines = pd.DataFrame(
        {
            'Metadata_Plate': __rand_array(),
            'Metadata_Well': __rand_array(),
            'Metadata_Site': __rand_array()
        },
        dtype=int)
    metadata.mergeOutlines(outlines)
    merged = pd.merge(metadata.data,
                      outlines,
                      on=["Metadata_Plate", "Metadata_Well", "Metadata_Site"])
    pd.testing.assert_frame_equal(metadata.data, merged)
Ejemplo n.º 2
0
def test_filter_records(metadata, dataframe, out_dir):
    metadata.loadSingle(os.path.join(out_dir, 'test.csv'), 'default', int)
    rule = lambda data: map(lambda row: any(row % 2 == 0), data.values)
    metadata.filterRecords(rule)
    filtered = dataframe.loc[rule(dataframe), :]
    pd.testing.assert_frame_equal(metadata.data, filtered)
Ejemplo n.º 3
0
def test_load_single(metadata, dataframe, out_dir):
    filename = os.path.join(out_dir, 'test.csv')
    assert os.path.exists(filename)
    metadata.loadSingle(filename, 'default', int)
    pd.testing.assert_frame_equal(metadata.data, dataframe)
Ejemplo n.º 4
0
def test_split_metadata(metadata, dataframe, out_dir):
    metadata.loadSingle(os.path.join(out_dir, 'test.csv'), 'default', int)
    train_rule = lambda data: data['Metadata_Plate'] < 50
    val_rule = lambda data: data['Metadata_Plate'] >= 50
    metadata.splitMetadata(train_rule, val_rule)
    assert len(metadata.train) + len(metadata.val) == len(metadata.data)