Ejemplo n.º 1
0
def pool_layer(pool_method, border_mode):
    return dp.Pool(
        win_shape=(3, 3),
        strides=(2, 2),
        method=pool_method,
        border_mode=border_mode,
    )
Ejemplo n.º 2
0
def pool_layer():
    return dp.Pool(
        win_shape=(2, 2),
        strides=(2, 2),
        border_mode='valid',
        method='max',
    )
Ejemplo n.º 3
0
def run():
    np.random.seed(3)
    layers = [
        dp.Activation('relu'),
        dp.Activation('sigmoid'),
        dp.Activation('tanh'),
        dp.FullyConnected(
            n_output=3,
            weights=dp.NormalFiller(sigma=0.01),
        ),
        dp.Dropout(0.2),
        dp.DropoutFullyConnected(
            n_output=10,
            weights=dp.NormalFiller(sigma=0.01),
            dropout=0.5,
        ),
    ]

    input_shape = (1, 5)
    x = np.random.normal(size=input_shape).astype(dp.float_)
    for layer in layers:
        dp.misc.check_bprop(layer, x)

    conv_layers = [
        dp.Convolutional(
            n_filters=32,
            filter_shape=(3, 3),
            border_mode='same',
            weights=dp.NormalFiller(sigma=0.01),
        ),
        dp.Convolutional(
            n_filters=32,
            filter_shape=(5, 5),
            border_mode='valid',
            weights=dp.NormalFiller(sigma=0.01),
        ),
        dp.Pool(
            win_shape=(3, 3),
            strides=(2, 2),
            method='max',
        )
    ]
    input_shape = (5, 3, 8, 8)
    x = np.random.normal(size=input_shape).astype(dp.float_)
    for layer in conv_layers:
        dp.misc.check_bprop(layer, x)
def test_pool():
    win_shapes = [(1, 1), (2, 2), (3, 3)]
    strides = [(1, 1), (2, 2), (3, 3)]
    border_modes = ['valid', 'same', 'full']
    methods = ['max', 'avg']
    confs = itertools.product(batch_sizes, n_channels, img_shapes,
                              win_shapes, strides, border_modes, methods)

    # Sample random parameter configurations to reduce workload.
    confs = shuffled(confs)[:100]

    for (batch_size, n_channel, img_shape, win_shape, stride, border_mode,
         method) in confs:
        if img_shape[0] < win_shape[0] or img_shape[1] < win_shape[1]:
            continue
        if border_mode != 'valid' and \
           (win_shape[0] != 1 or win_shape[1] != 1) and \
           ca._backend == 'cuda' and \
           ca.nnet.pool._default_impl == 'cudnn':
            # Bug: I think CUDArray/DeepPy calculates the padding in a manner
            # inconsistent with cuDNN
            continue
        if method == 'avg' and \
           ca._backend == 'cuda' and \
           ca.nnet.pool._default_impl == 'masked':
            # Not implemented yet
            continue
        print('Pool: batch_size=%i, n_channel=%i, img_shape=%s, win_shape=%s, '
              'stride=%s, border_mode=%s, method=%s'
              % (batch_size, n_channel, str(img_shape), str(win_shape),
                 str(stride), border_mode, method))

        x_shape = (batch_size, n_channel) + img_shape
        x = np.random.normal(size=x_shape).astype(ca.float_)
        layer = dp.Pool(win_shape=win_shape, method=method, strides=stride,
                        border_mode=border_mode)
        layer._setup(x_shape)
        y_img_shape = img_out_shape(img_shape, win_shape, stride, border_mode)
        assert layer.y_shape(x_shape) == (batch_size, n_channel) + y_img_shape

        check_grad(layer, x)
Ejemplo n.º 5
0
def run():
    # Prepare data
    dataset = dp.datasets.MNIST()
    x, y = dataset.data()
    x = x.astype(dp.float_)[:, np.newaxis, :, :]
    y = y.astype(dp.int_)
    train_idx, test_idx = dataset.split()
    x_train = x[train_idx]
    y_train = y[train_idx]
    x_test = x[test_idx]
    y_test = y[test_idx]

    scaler = dp.UniformScaler(high=255.)
    x_train = scaler.fit_transform(x_train)
    x_test = scaler.transform(x_test)

    batch_size = 128
    train_input = dp.SupervisedInput(x_train, y_train, batch_size=batch_size)
    test_input = dp.SupervisedInput(x_test, y_test)

    # Setup neural network
    net = dp.NeuralNetwork(layers=[
        dp.Convolutional(
            n_filters=32,
            filter_shape=(5, 5),
            weights=dp.Parameter(dp.AutoFiller(), weight_decay=0.0001),
        ),
        dp.Activation('relu'),
        dp.Pool(
            win_shape=(3, 3),
            strides=(2, 2),
            method='max',
        ),
        dp.Convolutional(
            n_filters=64,
            filter_shape=(5, 5),
            weights=dp.Parameter(dp.AutoFiller(), weight_decay=0.0001),
        ),
        dp.Activation('relu'),
        dp.Pool(
            win_shape=(3, 3),
            strides=(2, 2),
            method='max',
        ),
        dp.Flatten(),
        dp.FullyConnected(
            n_output=128,
            weights=dp.Parameter(dp.AutoFiller()),
        ),
        dp.FullyConnected(
            n_output=dataset.n_classes,
            weights=dp.Parameter(dp.AutoFiller()),
        ),
        dp.MultinomialLogReg(),
    ], )

    # Train neural network
    def val_error():
        return net.error(test_input)

    trainer = dp.StochasticGradientDescent(
        max_epochs=15,
        learn_rule=dp.Momentum(learn_rate=0.01, momentum=0.9),
    )
    trainer.train(net, train_input, val_error)

    # Visualize convolutional filters to disk
    for l, layer in enumerate(net.layers):
        if not isinstance(layer, dp.Convolutional):
            continue
        W = np.array(layer.params()[0].array)
        filepath = os.path.join('mnist', 'conv_layer_%i.png' % l)
        dp.misc.img_save(dp.misc.conv_filter_tile(W), filepath)

    # Evaluate on test data
    error = net.error(test_input)
    print('Test error rate: %.4f' % error)
    'win_shape': (3, 3),
    'strides': (2, 2),
    'border_mode': 'same',
    'method': 'max',
}
net = dp.NeuralNetwork(layers=[
    dp.Convolutional(
        n_filters=32,
        filter_shape=(5, 5),
        border_mode='same',
        weights=dp.Parameter(dp.NormalFiller(sigma=0.0001),
                             weight_decay=0.004,
                             monitor=True),
    ),
    dp.Activation('relu'),
    dp.Pool(**pool_kwargs),
    dp.Convolutional(
        n_filters=32,
        filter_shape=(5, 5),
        border_mode='same',
        weights=dp.Parameter(dp.NormalFiller(sigma=0.01),
                             weight_decay=0.004,
                             monitor=True),
    ),
    dp.Activation('relu'),
    dp.Pool(**pool_kwargs),
    dp.Convolutional(
        n_filters=64,
        filter_shape=(5, 5),
        border_mode='same',
        weights=dp.Parameter(dp.NormalFiller(sigma=0.01),
Ejemplo n.º 7
0
def run():
    # Prepare data
    batch_size = 128
    dataset = dp.datasets.CIFAR10()
    x, y = dataset.data()
    y = y.astype(dp.int_)
    train_idx, test_idx = dataset.split()
    x_train = preprocess_imgs(x[train_idx])
    y_train = y[train_idx]
    train_input = dp.SupervisedInput(x_train, y_train, batch_size=batch_size)

    # Setup neural network
    pool_kwargs = {
        'win_shape': (3, 3),
        'strides': (2, 2),
        'border_mode': 'same',
        'method': 'max',
    }
    nn = dp.NeuralNetwork(layers=[
        dp.Convolutional(
            n_filters=32,
            filter_shape=(5, 5),
            border_mode='same',
            weights=dp.Parameter(dp.NormalFiller(sigma=0.0001),
                                 penalty=('l2', 0.004),
                                 monitor=True),
        ),
        dp.Activation('relu'),
        dp.Pool(**pool_kwargs),
        dp.Convolutional(
            n_filters=32,
            filter_shape=(5, 5),
            border_mode='same',
            weights=dp.Parameter(dp.NormalFiller(sigma=0.01),
                                 penalty=('l2', 0.004),
                                 monitor=True),
        ),
        dp.Activation('relu'),
        dp.Pool(**pool_kwargs),
        dp.Convolutional(
            n_filters=64,
            filter_shape=(5, 5),
            border_mode='same',
            weights=dp.Parameter(dp.NormalFiller(sigma=0.01),
                                 penalty=('l2', 0.004),
                                 monitor=True),
        ),
        dp.Activation('relu'),
        dp.Pool(**pool_kwargs),
        dp.Flatten(),
        dp.FullyConnected(
            n_output=64,
            weights=dp.Parameter(dp.NormalFiller(sigma=0.1),
                                 penalty=('l2', 0.03)),
        ),
        dp.Activation('relu'),
        dp.FullyConnected(
            n_output=dataset.n_classes,
            weights=dp.Parameter(dp.NormalFiller(sigma=0.1),
                                 penalty=('l2', 0.03)),
        ),
        dp.MultinomialLogReg(),
    ], )

    dp.misc.profile(nn, train_input)
Ejemplo n.º 8
0
def run():
    # Prepare data
    batch_size = 128
    dataset = dp.datasets.CIFAR10()
    x, y = dataset.data()
    y = y.astype(dp.int_)
    train_idx, test_idx = dataset.split()
    x_train = preprocess_imgs(x[train_idx])
    y_train = y[train_idx]
    x_test = preprocess_imgs(x[test_idx])
    y_test = y[test_idx]
    train_input = dp.SupervisedInput(x_train, y_train, batch_size=batch_size)
    test_input = dp.SupervisedInput(x_test, y_test, batch_size=batch_size)

    # Setup neural network
    pool_kwargs = {
        'win_shape': (3, 3),
        'strides': (2, 2),
        'border_mode': 'same',
        'method': 'max',
    }
    nn = dp.NeuralNetwork(layers=[
        dp.Convolutional(
            n_filters=32,
            filter_shape=(5, 5),
            border_mode='same',
            weights=dp.Parameter(dp.NormalFiller(sigma=0.0001),
                                 penalty=('l2', 0.004),
                                 monitor=True),
        ),
        dp.Activation('relu'),
        dp.Pool(**pool_kwargs),
        dp.Convolutional(
            n_filters=32,
            filter_shape=(5, 5),
            border_mode='same',
            weights=dp.Parameter(dp.NormalFiller(sigma=0.01),
                                 penalty=('l2', 0.004),
                                 monitor=True),
        ),
        dp.Activation('relu'),
        dp.Pool(**pool_kwargs),
        dp.Convolutional(
            n_filters=64,
            filter_shape=(5, 5),
            border_mode='same',
            weights=dp.Parameter(dp.NormalFiller(sigma=0.01),
                                 penalty=('l2', 0.004),
                                 monitor=True),
        ),
        dp.Activation('relu'),
        dp.Pool(**pool_kwargs),
        dp.Flatten(),
        dp.FullyConnected(
            n_output=64,
            weights=dp.Parameter(dp.NormalFiller(sigma=0.1),
                                 penalty=('l2', 0.03)),
        ),
        dp.Activation('relu'),
        dp.FullyConnected(
            n_output=dataset.n_classes,
            weights=dp.Parameter(dp.NormalFiller(sigma=0.1),
                                 penalty=('l2', 0.03)),
        ),
        dp.MultinomialLogReg(),
    ], )

    # Train neural network
    n_epochs = [8, 8]
    learn_rate = 0.001

    def valid_error():
        return nn.error(test_input)

    for i, max_epochs in enumerate(n_epochs):
        lr = learn_rate / 10**i
        trainer = dp.StochasticGradientDescent(
            max_epochs=max_epochs,
            learn_rule=dp.Momentum(learn_rate=lr, momentum=0.9),
        )
        trainer.train(nn, train_input, valid_error)

    # Visualize convolutional filters to disk
    for l, layer in enumerate(nn.layers):
        if not isinstance(layer, dp.Convolutional):
            continue
        W = np.array(layer.params()[0].values)
        dp.misc.img_save(dp.misc.conv_filter_tile(W),
                         os.path.join('cifar10', 'convnet_layer_%i.png' % l))

    # Evaluate on test data
    error = nn.error(test_input)
    print('Test error rate: %.4f' % error)
Ejemplo n.º 9
0
def run():
    # Prepare data
    dataset = dp.datasets.MNIST()
    x, y = dataset.data()
    x = x[:, np.newaxis, :, :].astype(dp.float_) / 255.0 - 0.5
    y = y.astype(dp.int_)
    train_idx, test_idx = dataset.split()
    x_train = x[train_idx]
    y_train = y[train_idx]
    x_test = x[test_idx]
    y_test = y[test_idx]
    train_input = dp.SupervisedInput(x_train, y_train, batch_size=128)
    test_input = dp.SupervisedInput(x_test, y_test)

    # Setup neural network
    nn = dp.NeuralNetwork(layers=[
        dp.Convolutional(
            n_filters=20,
            filter_shape=(5, 5),
            weights=dp.Parameter(dp.NormalFiller(sigma=0.1),
                                 penalty=('l2', 0.00001)),
        ),
        dp.Activation('relu'),
        dp.Pool(
            win_shape=(2, 2),
            strides=(2, 2),
            method='max',
        ),
        dp.Convolutional(
            n_filters=50,
            filter_shape=(5, 5),
            weights=dp.Parameter(dp.NormalFiller(sigma=0.1),
                                 penalty=('l2', 0.00001)),
        ),
        dp.Activation('relu'),
        dp.Pool(
            win_shape=(2, 2),
            strides=(2, 2),
            method='max',
        ),
        dp.Flatten(),
        dp.FullyConnected(
            n_output=500,
            weights=dp.NormalFiller(sigma=0.01),
        ),
        dp.FullyConnected(
            n_output=dataset.n_classes,
            weights=dp.NormalFiller(sigma=0.01),
        ),
        dp.MultinomialLogReg(),
    ], )

    # Train neural network
    def valid_error():
        return nn.error(test_input)

    trainer = dp.StochasticGradientDescent(
        max_epochs=15,
        learn_rule=dp.Momentum(learn_rate=0.1, momentum=0.9),
    )
    trainer.train(nn, train_input, valid_error)

    # Visualize convolutional filters to disk
    for layer_idx, layer in enumerate(nn.layers):
        if not isinstance(layer, dp.Convolutional):
            continue
        W = np.array(layer.params()[0].values)
        dp.misc.img_save(
            dp.misc.conv_filter_tile(W),
            os.path.join('mnist', 'convnet_layer_%i.png' % layer_idx))

    # Evaluate on test data
    error = nn.error(test_input)
    print('Test error rate: %.4f' % error)
import numpy as np
import deeppy as dp

net = dp.NeuralNetwork(layers=[
    dp.Convolutional(
        n_filters=32,
        filter_shape=(5, 5),
        weights=dp.Parameter(dp.AutoFiller(), weight_decay=0.0001),
    ),
    dp.Activation('relu'),
    dp.Pool(
        win_shape=(3, 3),
        strides=(2, 2),
        method='max',
    ),
    dp.Convolutional(
        n_filters=64,
        filter_shape=(5, 5),
        weights=dp.Parameter(dp.AutoFiller(), weight_decay=0.0001),
    ),
    dp.Activation('relu'),
    dp.Pool(
        win_shape=(3, 3),
        strides=(2, 2),
        method='max',
    ),
    dp.Flatten(),
    dp.FullyConnected(
        n_output=128,
        weights=dp.Parameter(dp.AutoFiller()),
    ),