Ejemplo n.º 1
0
def train(cfg):
    # Set seeds for determinism
    torch.manual_seed(cfg.training.seed)
    torch.cuda.manual_seed_all(cfg.training.seed)
    np.random.seed(cfg.training.seed)
    random.seed(cfg.training.seed)

    main_proc = True
    device = torch.device("cpu" if cfg.training.no_cuda else "cuda")

    is_distributed = os.environ.get(
        "LOCAL_RANK")  # If local rank exists, distributed env

    if is_distributed:
        # when using NCCL, on failures, surviving nodes will deadlock on NCCL ops
        # because NCCL uses a spin-lock on the device. Set this env var and
        # to enable a watchdog thread that will destroy stale NCCL communicators
        os.environ["NCCL_BLOCKING_WAIT"] = "1"

        device_id = int(os.environ["LOCAL_RANK"])
        torch.cuda.set_device(device_id)
        print(f"Setting CUDA Device to {device_id}")

        dist.init_process_group(backend=cfg.training.dist_backend.value)
        main_proc = device_id == 0  # Main process handles saving of models and reporting

    if OmegaConf.get_type(cfg.checkpointing) == FileCheckpointConfig:
        checkpoint_handler = FileCheckpointHandler(cfg=cfg.checkpointing)
    elif OmegaConf.get_type(cfg.checkpointing) == GCSCheckpointConfig:
        checkpoint_handler = GCSCheckpointHandler(cfg=cfg.checkpointing)
    else:
        raise ValueError("Checkpoint Config has not been specified correctly.")

    if main_proc and cfg.visualization.visdom:
        visdom_logger = VisdomLogger(id=cfg.visualization.id,
                                     num_epochs=cfg.training.epochs)
    if main_proc and cfg.visualization.tensorboard:
        tensorboard_logger = TensorBoardLogger(
            id=cfg.visualization.id,
            log_dir=to_absolute_path(cfg.visualization.log_dir),
            log_params=cfg.visualization.log_params)

    if cfg.checkpointing.load_auto_checkpoint:
        latest_checkpoint = checkpoint_handler.find_latest_checkpoint()
        if latest_checkpoint:
            cfg.checkpointing.continue_from = latest_checkpoint

    if cfg.checkpointing.continue_from:  # Starting from previous model
        state = TrainingState.load_state(
            state_path=to_absolute_path(cfg.checkpointing.continue_from))
        model = state.model
        if cfg.training.finetune:
            state.init_finetune_states(cfg.training.epochs)

        if main_proc and cfg.visualization.visdom:  # Add previous scores to visdom graph
            visdom_logger.load_previous_values(state.epoch, state.results)
        if main_proc and cfg.visualization.tensorboard:  # Previous scores to tensorboard logs
            tensorboard_logger.load_previous_values(state.epoch, state.results)
    else:
        # Initialise new model training
        with open(to_absolute_path(cfg.data.labels_path)) as label_file:
            labels = json.load(label_file)

        if OmegaConf.get_type(cfg.model) is BiDirectionalConfig:
            model = DeepSpeech(
                rnn_hidden_size=cfg.model.hidden_size,
                nb_layers=cfg.model.hidden_layers,
                labels=labels,
                rnn_type=supported_rnns[cfg.model.rnn_type.value],
                audio_conf=cfg.data.spect,
                bidirectional=True)
        elif OmegaConf.get_type(cfg.model) is UniDirectionalConfig:
            model = DeepSpeech(
                rnn_hidden_size=cfg.model.hidden_size,
                nb_layers=cfg.model.hidden_layers,
                labels=labels,
                rnn_type=supported_rnns[cfg.model.rnn_type.value],
                audio_conf=cfg.data.spect,
                bidirectional=False,
                context=cfg.model.lookahead_context)
        else:
            raise ValueError("Model Config has not been specified correctly.")

        state = TrainingState(model=model)
        state.init_results_tracking(epochs=cfg.training.epochs)

    # Data setup
    evaluation_decoder = GreedyDecoder(
        model.labels)  # Decoder used for validation
    train_dataset = SpectrogramDataset(audio_conf=model.audio_conf,
                                       manifest_filepath=to_absolute_path(
                                           cfg.data.train_manifest),
                                       labels=model.labels,
                                       normalize=True,
                                       augmentation_conf=cfg.data.augmentation)
    test_dataset = SpectrogramDataset(audio_conf=model.audio_conf,
                                      manifest_filepath=to_absolute_path(
                                          cfg.data.val_manifest),
                                      labels=model.labels,
                                      normalize=True)
    if not is_distributed:
        train_sampler = DSRandomSampler(dataset=train_dataset,
                                        batch_size=cfg.data.batch_size,
                                        start_index=state.training_step)
    else:
        train_sampler = DSElasticDistributedSampler(
            dataset=train_dataset,
            batch_size=cfg.data.batch_size,
            start_index=state.training_step)
    train_loader = AudioDataLoader(dataset=train_dataset,
                                   num_workers=cfg.data.num_workers,
                                   batch_sampler=train_sampler)
    test_loader = AudioDataLoader(dataset=test_dataset,
                                  num_workers=cfg.data.num_workers,
                                  batch_size=cfg.data.batch_size)

    model = model.to(device)
    parameters = model.parameters()
    if OmegaConf.get_type(cfg.optim) is SGDConfig:
        optimizer = torch.optim.SGD(parameters,
                                    lr=cfg.optim.learning_rate,
                                    momentum=cfg.optim.momentum,
                                    nesterov=True,
                                    weight_decay=cfg.optim.weight_decay)
    elif OmegaConf.get_type(cfg.optim) is AdamConfig:
        optimizer = torch.optim.AdamW(parameters,
                                      lr=cfg.optim.learning_rate,
                                      betas=cfg.optim.betas,
                                      eps=cfg.optim.eps,
                                      weight_decay=cfg.optim.weight_decay)
    else:
        raise ValueError("Optimizer has not been specified correctly.")

    model, optimizer = amp.initialize(model,
                                      optimizer,
                                      enabled=not cfg.training.no_cuda,
                                      opt_level=cfg.apex.opt_level,
                                      loss_scale=cfg.apex.loss_scale)
    if state.optim_state is not None:
        optimizer.load_state_dict(state.optim_state)
    if state.amp_state is not None:
        amp.load_state_dict(state.amp_state)

    # Track states for optimizer/amp
    state.track_optim_state(optimizer)
    if not cfg.training.no_cuda:
        state.track_amp_state(amp)

    if is_distributed:
        model = DistributedDataParallel(model, device_ids=[device_id])
    print(model)
    print("Number of parameters: %d" % DeepSpeech.get_param_size(model))

    criterion = CTCLoss()
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()

    for epoch in range(state.epoch, cfg.training.epochs):
        model.train()
        end = time.time()
        start_epoch_time = time.time()
        state.set_epoch(epoch=epoch)
        train_sampler.set_epoch(epoch=epoch)
        train_sampler.reset_training_step(training_step=state.training_step)
        for i, (data) in enumerate(train_loader, start=state.training_step):
            state.set_training_step(training_step=i)
            inputs, targets, input_percentages, target_sizes = data
            input_sizes = input_percentages.mul_(int(inputs.size(3))).int()
            # measure data loading time
            data_time.update(time.time() - end)
            inputs = inputs.to(device)

            out, output_sizes = model(inputs, input_sizes)
            out = out.transpose(0, 1)  # TxNxH

            float_out = out.float()  # ensure float32 for loss
            loss = criterion(float_out, targets, output_sizes,
                             target_sizes).to(device)
            loss = loss / inputs.size(0)  # average the loss by minibatch
            loss_value = loss.item()

            # Check to ensure valid loss was calculated
            valid_loss, error = check_loss(loss, loss_value)
            if valid_loss:
                optimizer.zero_grad()

                # compute gradient
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer),
                                               cfg.optim.max_norm)
                optimizer.step()
            else:
                print(error)
                print('Skipping grad update')
                loss_value = 0

            state.avg_loss += loss_value
            losses.update(loss_value, inputs.size(0))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
                      (epoch + 1), (i + 1),
                      len(train_loader),
                      batch_time=batch_time,
                      data_time=data_time,
                      loss=losses))

            if main_proc and cfg.checkpointing.checkpoint_per_iteration:
                checkpoint_handler.save_iter_checkpoint_model(epoch=epoch,
                                                              i=i,
                                                              state=state)
            del loss, out, float_out

        state.avg_loss /= len(train_dataset)

        epoch_time = time.time() - start_epoch_time
        print('Training Summary Epoch: [{0}]\t'
              'Time taken (s): {epoch_time:.0f}\t'
              'Average Loss {loss:.3f}\t'.format(epoch + 1,
                                                 epoch_time=epoch_time,
                                                 loss=state.avg_loss))

        with torch.no_grad():
            wer, cer, output_data = run_evaluation(
                test_loader=test_loader,
                device=device,
                model=model,
                decoder=evaluation_decoder,
                target_decoder=evaluation_decoder)

        state.add_results(epoch=epoch,
                          loss_result=state.avg_loss,
                          wer_result=wer,
                          cer_result=cer)

        print('Validation Summary Epoch: [{0}]\t'
              'Average WER {wer:.3f}\t'
              'Average CER {cer:.3f}\t'.format(epoch + 1, wer=wer, cer=cer))

        if main_proc and cfg.visualization.visdom:
            visdom_logger.update(epoch, state.result_state)
        if main_proc and cfg.visualization.tensorboard:
            tensorboard_logger.update(epoch, state.result_state,
                                      model.named_parameters())

        if main_proc and cfg.checkpointing.checkpoint:  # Save epoch checkpoint
            checkpoint_handler.save_checkpoint_model(epoch=epoch, state=state)
        # anneal lr
        for g in optimizer.param_groups:
            g['lr'] = g['lr'] / cfg.optim.learning_anneal
        print('Learning rate annealed to: {lr:.6f}'.format(lr=g['lr']))

        if main_proc and (state.best_wer is None or state.best_wer > wer):
            checkpoint_handler.save_best_model(epoch=epoch, state=state)
            state.set_best_wer(wer)
            state.reset_avg_loss()
        state.reset_training_step()  # Reset training step for next epoch
 def val_dataloader(self):
     val_dataset = self._create_dataset(self.val_path)
     val_loader = AudioDataLoader(dataset=val_dataset,
                                  num_workers=self.data_cfg.num_workers,
                                  batch_size=self.data_cfg.batch_size)
     return val_loader