Ejemplo n.º 1
0
def process_one_label_dataset(label_ds, config, output_index=None):
    """process one-label data set."""

    logging.info("Loading one label dataset...")
    num_parallel_calls = config["data"]["task"]["num_parallel_calls"]
    classes = config["data"]["task"]["classes"]
    if isinstance(classes, list):
        if output_index is None or output_index not in range(len(classes)):
            raise IndexError(
                "output_index:{} not in the range of classes length: "
                "{}!".format(output_index, len(classes)))
        num_classes = classes[output_index]["num_classes"]
        label_vocab_file_path = config["data"]["task"]["label_vocab"][
            output_index]
    else:
        num_classes = classes["num_classes"]
        label_vocab_file_path = config["data"]["task"]["label_vocab"]

    label_ds = label_ds.map(lambda x: tokenize_label(
        x, maxlen=1, label_vocab_file_path=label_vocab_file_path, pad_id=0),
                            num_parallel_calls=num_parallel_calls)

    label_ds = label_ds.map(
        lambda l: tf.one_hot(l, num_classes, dtype=tf.int32),
        num_parallel_calls=num_parallel_calls)

    label_ds = label_ds.map(tf.squeeze, num_parallel_calls=num_parallel_calls)

    return label_ds
Ejemplo n.º 2
0
def cross_entropy(logits,
                  labels,
                  input_length=None,
                  label_length=None,
                  smoothing=0.0,
                  reduction=tf.losses.Reduction.SUM_BY_NONZERO_WEIGHTS):
    '''
  cross entropy function for classfication and seq classfication
  :param, label_length, for seq task, this for target seq length, e.g. a b c </s>, 4
  '''
    del input_length

    onehot_labels = tf.cond(pred=tf.equal(
        tf.rank(logits) - tf.rank(labels), 1),
                            true_fn=lambda: tf.one_hot(
                                labels, tf.shape(logits)[-1], dtype=tf.int32),
                            false_fn=lambda: labels)

    if label_length is not None:
        weights = utils.len_to_mask(label_length)
    else:
        weights = 1.0

    loss = tf.losses.softmax_cross_entropy(onehot_labels=onehot_labels,
                                           logits=logits,
                                           weights=weights,
                                           label_smoothing=smoothing,
                                           reduction=reduction)

    return loss
Ejemplo n.º 3
0
    def test_dataset(self):
        ''' dataset unittest'''
        batch_size = 4
        self.config['solver']['optimizer']['batch_size'] = batch_size

        task_name = self.config['data']['task']['name']
        task_class = registers.task[task_name]
        task = task_class(self.config, utils.TRAIN)

        dataset = task.input_fn(utils.TRAIN, batch_size, 1)()

        features, labels = dataset.make_one_shot_iterator().get_next()
        samples = features['inputs']
        filenames = features['filepath']
        clip_ids = features['clipid']
        soft_labels = features['soft_labels']

        with self.cached_session(use_gpu=False, force_gpu=False) as sess:
            while True:
                batch_inputs, batch_labels, batch_files, batch_clipids, labels_onehot, batch_soft_labels = \
                   sess.run([samples, labels, filenames, clip_ids, tf.one_hot(labels, 2), soft_labels])

                del labels_onehot
                logging.info("feat shape: {}".format(batch_inputs.shape))
                logging.info("labels: {}".format(batch_labels))
                logging.info("filename: {}".format(batch_files))
                logging.info("clip id: {}".format(batch_clipids))
                logging.info("soft_labels: {}".format(batch_soft_labels))
                break
Ejemplo n.º 4
0
def focal_loss(logits, labels, alpha, gamma=2, name='focal_loss'):
  """
    Focal loss for multi classification
    :param logits: A float32 tensor of shape [batch_size num_class].
    :param labels: A int32 tensor of shape [batch_size, num_class] or [batch_size].
    :param alpha: A 1D float32 tensor for focal loss alpha hyper-parameter
    :param gamma: A scalar for focal loss gamma hyper-parameter.
    Returns: A tensor of the same shape as `lables`
    """
  if len(labels.shape) == 1:
    labels = tf.one_hot(labels, logits.shape[-1])
  else:
    labels = labels
  labels = tf.to_float(labels)

  y_pred = tf.nn.softmax(logits, dim=-1)
  L = -labels * tf.log(y_pred)
  L *= alpha * ((1 - y_pred)**gamma)
  loss = tf.reduce_sum(L)

  if tf.executing_eagerly():
    tf.contrib.summary.scalar(name, loss)
  else:
    tf.summary.scalar(name, loss)

  return loss
Ejemplo n.º 5
0
def arcface_loss(embedding,
                 labels,
                 out_num,
                 weights=None,
                 s=64.,
                 m=0.5,
                 limit_to_pi=True):
    '''
  https://github.com/auroua/InsightFace_TF/blob/master/losses/face_losses.py
  :param embedding: the input embedding vectors
  :param labels:  the input labels, the shape should be eg: (batch_size, 1)
  :param s: scalar value default is 64
  :param out_num: output class num
  :param weights: a tf.variable with shape (embedding.shape[-1], out_num)
                  or None to make a new one internally. default = None
  :param m: the margin value, default is 0.5
  :return: the final cacualted output, this output is send into the tf.nn.softmax directly
  '''
    cos_m = math.cos(m)
    sin_m = math.sin(m)
    mm = sin_m * m  # issue 1
    threshold = math.cos(math.pi - m)
    with tf.variable_scope('arcface_loss'):
        # inputs and weights norm
        embedding_norm = tf.norm(embedding, axis=1, keep_dims=True)
        embedding = tf.div(embedding, embedding_norm, name='norm_embedding')
        if weights is None:
            weights = tf.get_variable(
                name='weights',
                shape=[embedding.shape[-1].value, out_num],
                initializer=tf.initializer.glorot_unifrom())
        weights_norm = tf.norm(weights, axis=0, keep_dims=True)
        weights = tf.div(weights, weights_norm, name='norm_weights')
        # cos(theta+m)
        cos_t = tf.matmul(embedding, weights, name='cos_t')
        cos_t2 = tf.square(cos_t, name='cos_2')
        sin_t2 = tf.subtract(1., cos_t2, name='sin_2')
        sin_t = tf.sqrt(sin_t2, name='sin_t')
        cos_mt = s * tf.subtract(tf.multiply(cos_t, cos_m),
                                 tf.multiply(sin_t, sin_m),
                                 name='cos_mt')

        if limit_to_pi:
            # this condition controls the theta+m should in range [0, pi]
            #      0<=theta+m<=pi
            #     -m<=theta<=pi-m
            cond_v = cos_t - threshold
            cond = tf.cast(tf.nn.relu(cond_v, name='if_else'), dtype=tf.bool)

            keep_val = s * (cos_t - mm)
            cos_mt_temp = tf.where(cond, cos_mt, keep_val)
        else:
            cos_mt_temp = cos_mt

        mask = tf.one_hot(labels, depth=out_num, name='one_hot_mask')
        # mask = tf.squeeze(mask, 1)
        inv_mask = tf.subtract(1., mask, name='inverse_mask')

        s_cos_t = tf.multiply(s, cos_t, name='scalar_cos_t')

        output = tf.add(tf.multiply(s_cos_t, inv_mask),
                        tf.multiply(cos_mt_temp, mask),
                        name='arcface_loss_output')
    return output