def test_ready_skipped(self):
        task = UploadTask(group_id, upload_id=upload_id, client=self.client)

        self.mock_response(
            responses.GET,
            {"data": {"id": upload_id, "attributes": {"status": "PENDING"}}},
        )
        self.mock_response(
            responses.GET,
            {"data": {"id": upload_id, "attributes": {"status": "PENDING"}}},
        )
        self.mock_response(
            responses.GET,
            {
                "data": {
                    "id": task_id,
                    "attributes": {"status": "SUCCESS", "load": {"state": "SKIPPED"}},
                }
            },
        )

        assert not task.ready
        assert task.status == "PENDING"
        assert task.tuid is None

        assert task.ready
        assert task.status == "SUCCESS"
        assert task.tuid == task_id
    def test_results(self):
        task = UploadTask(group_id, upload_id=upload_id, client=self.client)

        self.mock_response(
            responses.GET,
            {
                "data": {
                    "id": upload_id,
                    "attributes": {
                        "status": "SUCCESS",
                        "result": {
                            "errors": ["invalid geometry"],
                            "input_features": 1,
                            "input_rows": 1,
                        },
                        "load": {
                            "state": "DONE",
                            "errors": ["some BQ error"],
                            "output_rows": 1,
                        },
                    },
                }
            },
        )

        assert task.ready
        assert task.status == "SUCCESS"
        assert task.error_rows == 2
        assert len(task.errors) == 2
        assert task.input_features == 1
        assert task.input_rows == 1
        assert task.output_rows == 1
Ejemplo n.º 3
0
    def upload(self, file_ref, max_errors=0):
        """
        Asynchonously add features from a file of
        `Newline Delimited JSON <https://github.com/ndjson/ndjson-spec>`_
        features.  The file itself will be uploaded synchronously,
        but loading the features is done asynchronously.

        Parameters
        ----------
        file_ref : io.IOBase or str
            An open file object, or a path to the file to upload.
        max_errors : int
            The maximum number of errors permitted before declaring failure.

        Returns
        -------
        `UploadTask`
            The upload task.  The details may take time to become available
            so asking for them before they're available will block
            until the details are available.
        """
        upload_id = self.vector_client.upload_features(file_ref, self.id)
        return UploadTask(self.id,
                          upload_id=upload_id,
                          client=self.vector_client)
Ejemplo n.º 4
0
    def test_results(self):
        task = UploadTask(group_id, upload_id=upload_id, client=self.client)

        self.mock_response(responses.GET, {
            'data': {
                'id': upload_id,
                'attributes': {
                    'status': 'SUCCESS',
                    'result': {
                        'errors': ['invalid geometry'],
                        'input_features': 1,
                        'input_rows': 1
                    },
                    'load': {
                        'state': 'DONE',
                        'errors': ['some BQ error'],
                        'output_rows': 1
                    },
                }}})

        self.assertTrue(task.ready)
        self.assertEqual(task.status, 'SUCCESS')
        self.assertEqual(task.error_rows, 2)
        self.assertEqual(len(task.errors), 2)
        self.assertEqual(task.input_features, 1)
        self.assertEqual(task.input_rows, 1)
        self.assertEqual(task.output_rows, 1)
Ejemplo n.º 5
0
    def upload(self, file_ref, max_errors=0, correct_winding_order=False):
        """
        Asynchonously add features from a file of
        `Newline Delimited JSON <https://github.com/ndjson/ndjson-spec>`_
        features.  The file itself will be uploaded synchronously,
        but loading the features is done asynchronously.

        Parameters
        ----------
        file_ref : io.IOBase or str
            An open file object, or a path to the file to upload.
        max_errors : int
            The maximum number of errors permitted before declaring failure.
        correct_winding_order : bool
            A Boolean specifying whether to correct Polygon and MultiPolygon
            features that do not follow counter-clockwise winding order.

        Returns
        -------
        `UploadTask`
            The upload task.  The details may take time to become available
            so asking for them before they're available will block
            until the details are available.
        """
        upload_id = self.vector_client.upload_features(
            file_ref,
            self.id,
            max_errors=max_errors,
            correct_winding_order=correct_winding_order)
        return UploadTask(self.id,
                          upload_id=upload_id,
                          client=self.vector_client)
    def upload(self, file_ref, max_errors=0, fix_geometry="accept"):
        """
        Asynchronously add features from a file of
        `Newline Delimited JSON <https://github.com/ndjson/ndjson-spec>`_
        features.  The file itself will be uploaded synchronously,
        but loading the features is done asynchronously.

        Parameters
        ----------
        file_ref : io.IOBase or str
            An open file object, or a path to the file to upload.
        max_errors : int
            The maximum number of errors permitted before declaring failure.
        fix_geometry : str
            String specifying how to handle certain problem geometries, including those
            which do not follow counter-clockwise winding order (which is required by the
            GeoJSON spec but not many popular tools). Allowed values are ``reject`` (reject
            invalid geometries with an error), ``fix`` (correct invalid geometries if
            possible and use this corrected value when creating the feature), and ``accept``
            (the default) which will correct the geometry for internal use but retain the
            original geometry in the results.

        Returns
        -------
        :class:`UploadTask <descarteslabs.common.tasks.uploadtask.UploadTask>`
            The upload task.  The details may take time to become available
            so asking for them before they're available will block
            until the details are available.

        Raises
        ------
        ~descarteslabs.client.exceptions.NotFoundError
            Raised if the product cannot be found.
        ~descarteslabs.client.exceptions.RateLimitError
            Raised when too many requests have been made within a given time period.
        ~descarteslabs.client.exceptions.ServerError
            Raised when a unknown error occurred on the server.

        Example
        -------
        >>> from descarteslabs.vectors import FeatureCollection, Feature
        >>> fc = FeatureCollection('my-vector-product-id')   # doctest: +SKIP
        >>> task = fc.upload("/path/to/features.ndjson")    # doctest: +SKIP

        """
        upload_id = self.vector_client.upload_features(
            file_ref,
            self.id,
            max_errors=max_errors,
            fix_geometry=fix_geometry)
        return UploadTask(self.id,
                          upload_id=upload_id,
                          client=self.vector_client)
Ejemplo n.º 7
0
    def test_ready_skipped(self):
        task = UploadTask(group_id, upload_id=upload_id, client=self.client)

        self.mock_response(responses.GET,
                           {'data': {'id': upload_id, 'attributes': {'status': 'PENDING'}}})
        self.mock_response(responses.GET,
                           {'data': {'id': upload_id, 'attributes': {'status': 'PENDING'}}})
        self.mock_response(responses.GET,
                           {'data': {'id': task_id, 'attributes': {'status': 'SUCCESS', 'load': {'state': 'SKIPPED'}}}})

        self.assertFalse(task.ready)
        self.assertEqual(task.status, 'PENDING')
        self.assertIsNone(task.tuid)

        self.assertTrue(task.ready)
        self.assertEqual(task.status, 'SUCCESS')
        self.assertEqual(task.tuid, task_id)
Ejemplo n.º 8
0
    def test_ready_failure(self):
        task = UploadTask(group_id, upload_id=upload_id, client=self.client)

        self.mock_response(responses.GET,
                           {'data': {'id': upload_id, 'attributes': {'status': 'PENDING'}}})
        self.mock_response(responses.GET,
                           {'data': {'id': upload_id, 'attributes': {'status': 'PENDING'}}})
        self.mock_response(responses.GET,
                           {'data': {'id': task_id, 'attributes': {'status': 'FAILURE'}}})

        self.assertFalse(task.ready)
        self.assertEqual(task.status, 'PENDING')
        self.assertIsNone(task.tuid)

        self.assertTrue(task.ready)
        self.assertEqual(task.status, 'FAILURE')
        self.assertEqual(task.tuid, task_id)
    def list_uploads(self):
        """
        Get all the upload tasks for this product.

        Returns
        -------
        list(`UploadTask`)
            The list of tasks for the product.
        """
        results = []

        for result in self.vector_client.get_upload_results(self.id):
            results.append(
                UploadTask(self.id,
                           tuid=result.id,
                           result_attrs=result.attributes,
                           client=self.vector_client))

        return results
    def test_ready_failure(self):
        task = UploadTask(group_id, upload_id=upload_id, client=self.client)

        self.mock_response(
            responses.GET,
            {"data": {"id": upload_id, "attributes": {"status": "PENDING"}}},
        )
        self.mock_response(
            responses.GET,
            {"data": {"id": upload_id, "attributes": {"status": "PENDING"}}},
        )
        self.mock_response(
            responses.GET,
            {"data": {"id": task_id, "attributes": {"status": "FAILURE"}}},
        )

        assert not task.ready
        assert task.status == "PENDING"
        assert task.tuid is None

        assert task.ready
        assert task.status == "FAILURE"
        assert task.tuid == task_id
    def test_from_guid_tuid(self):
        task = UploadTask(group_id, tuid=task_id, client=self.client)

        assert task.tuid == task_id
    def test_from_guid_upload_id(self):
        task = UploadTask(group_id, upload_id=upload_id, client=self.client)

        assert task.upload_id == upload_id
    def list_uploads(self, pending=True):
        """
        Get all the upload tasks for this product.

        Parameters
        ----------
        pending : bool
            If ``True`` then include pending/currently running upload tasks in the result,
            otherwise only include complete upload tasks. Defaults to ``True``.

        Returns
        -------
        list(:class:`UploadTask <descarteslabs.common.tasks.uploadtask.UploadTask>`)
            The list of tasks for the product.

        Raises
        ------
        ~descarteslabs.client.exceptions.NotFoundError
            Raised if the product cannot be found.
        ~descarteslabs.client.exceptions.RateLimitError
            Raised when too many requests have been made within a given time period.
        ~descarteslabs.client.exceptions.ServerError
            Raised when a unknown error occurred on the server.

        Example
        -------
        >>> from descarteslabs.vectors import FeatureCollection, Feature
        >>> fc = FeatureCollection('my-vector-product-id')   # doctest: +SKIP
        >>> task = fc.upload("/path/to/features.ndjson")    # doctest: +SKIP
        >>> uploads = fc.list_uploads()   # doctest: +SKIP

        """
        results = []

        for result in self.vector_client.get_upload_results(self.id,
                                                            pending=pending):
            # PENDING tasks aren't really tasks yet, and the id is the upload_id, not the task_id
            if result.attributes and result.attributes.get(
                    "status") == "PENDING":
                results.append(
                    UploadTask(
                        self.id,
                        upload_id=result.id,
                        result_attrs=result.attributes,
                        client=self.vector_client,
                    ))
            else:
                upload = UploadTask(
                    self.id,
                    tuid=result.id,
                    result_attrs=result.attributes,
                    client=self.vector_client,
                )
                # get_upload_results does not (and cannot) include the task result,
                # so force an update
                try:
                    upload.get_result(wait=False)
                except TransientResultError:
                    pass
                results.append(upload)

        return results
Ejemplo n.º 14
0
    def test_from_guid_tuid(self):
        task = UploadTask(group_id, tuid=task_id, client=self.client)

        self.assertEqual(task.tuid, task_id)