Ejemplo n.º 1
0
    def __init__(  # parameters of the class
        self,
        problem: MOProblem,
        scalarization_function: MOEADSF = Tchebycheff(),
        n_neighbors: int = 20,
        population_params: Dict = None,
        initial_population: Population = None,
        lattice_resolution: int = None,
        use_repair: bool = True,
        n_parents: int = 2,
        a_priori: bool = False,
        interact: bool = False,
        use_surrogates: bool = False,
        n_iterations: int = 10,
        n_gen_per_iter: int = 100,
        total_function_evaluations: int = 0,
    ):
        super().__init__(  # parameters for decomposition based approach
            problem=problem,
            population_size=None,
            population_params=population_params,
            initial_population=initial_population,
            lattice_resolution=lattice_resolution,
            a_priori=a_priori,
            interact=interact,
            use_surrogates=use_surrogates,
            n_iterations=n_iterations,
            n_gen_per_iter=n_gen_per_iter,
            total_function_evaluations=total_function_evaluations,
        )
        self.population_size = self.population.pop_size
        self.problem = problem
        self.scalarization_function = scalarization_function
        self.n_neighbors = n_neighbors

        self.use_repair = use_repair
        self.n_parents = n_parents
        self.population.mutation = BP_mutation(
            problem.get_variable_lower_bounds(),
            problem.get_variable_upper_bounds(),
            0.5,
            20,
        )
        self.population.recombination = SBX_xover(1.0, 20)

        selection_operator = MOEAD_select(self.population,
                                          SF_type=self.scalarization_function)
        self.selection_operator = selection_operator
        # Compute the distance between each pair of reference vectors
        distance_matrix_vectors = distance_matrix(
            self.reference_vectors.values, self.reference_vectors.values)
        # Get the closest vectors to obtain the neighborhoods
        self.neighborhoods = np.argsort(distance_matrix_vectors,
                                        axis=1,
                                        kind="quicksort")[:, :n_neighbors]
        self.population.update_ideal()
        self._ideal_point = self.population.ideal_objective_vector
    def __init__(self,
                 problem: MOProblem,
                 assign_type: str = "RandomDesign",
                 pop_size=None,
                 recombination_type=None,
                 crossover_type="simulated_binary_crossover",
                 mutation_type="bounded_polynomial_mutation",
                 *args):
        """Initialize the population.

        Parameters
        ----------
        problem : BaseProblem
            An object of the class Problem
        assign_type : str, optional
            Define the method of creation of population.
            If 'assign_type' is 'RandomDesign' the population is generated
            randomly. If 'assign_type' is 'LHSDesign', the population is
            generated via Latin Hypercube Sampling. If 'assign_type' is
            'custom', the population is imported from file. If assign_type
            is 'empty', create blank population.
            'EvoNN' and 'EvoDN2' will create neural networks or deep neural networks,
            respectively,
             for population .
        plotting : bool, optional
            (the default is True, which creates the plots)
        pop_size : int
            Population size
        recombination_type, crossover_type, mutation_type : str
            Recombination functions. If recombination_type is specified, crossover and
            mutation
            will be handled by the same function. If None, they are done separately.

        """
        self.assign_type = assign_type
        self.num_var = problem.n_of_variables
        self.lower_limits = np.asarray(problem.get_variable_lower_bounds())
        self.upper_limits = np.asarray(problem.get_variable_upper_bounds())
        self.hyp = 0
        self.non_dom = 0
        self.pop_size = pop_size
        # Fix to remove the following assumptions
        self.recombination_funcs = {
            "biogp_xover": biogp_xover,
            "biogp_mut": biogp_mutation,
            "evodn2_xover_mutation": evodn2_xover_mutation,
            "evonn_xover_mutation": evonn_xover_mutation,
            "bounded_polynomial_mutation": bounded_polynomial_mutation,
            "simulated_binary_crossover": simulated_binary_crossover,
        }
        self.crossover_type = crossover_type
        self.mutation_type = mutation_type
        self.recombination = self.recombination_funcs.get(
            recombination_type, None)
        if recombination_type is None:
            self.crossover = self.recombination_funcs.get(crossover_type, None)
            self.mutation = self.recombination_funcs.get(mutation_type, None)
        self.problem = problem
        self.filename = (problem.name + "_" + str(problem.n_of_objectives)
                         )  # Used for plotting
        self.plotting = plotting
        self.individuals = []
        self.objectives = np.empty((0, self.problem.n_of_objectives), float)
        if problem.minimize is not None:
            self.fitness = self.objectives[:, self.problem.minimize]
            self.ideal_fitness = np.full((1, self.fitness.shape[1]), np.inf)
            self.worst_fitness = -1 * self.ideal_fitness
        else:
            self.fitness = np.empty((0, self.problem.num_of_objectives), float)
            self.ideal_fitness = np.full((1, self.problem.num_of_objectives),
                                         np.inf)
        self.worst_fitness = -1 * self.ideal_fitness
        self.constraint_violation = np.empty(
            (0, self.problem.num_of_constraints), float)
        self.archive = pd.DataFrame(
            columns=["generation", "decision_variables", "objective_values"])

        if not assign_type == "empty":
            individuals = create_new_individuals(assign_type,
                                                 problem,
                                                 pop_size=self.pop_size)
            self.add(individuals)

        if self.plotting:
            self.figure = []
            self.plot_init_()