def plot_psf_vs_time(outdir,cam,exps,fiber,dicLines,xaxis):

    dic = copy.deepcopy(exps)
    for k,v in dic.items():
        dic[k][cam] = {}
        idx = str(k).zfill(8)
        p = '{}/psf-{}-{}.fits'.format(outdir,cam,idx)
        try:
            psf = read_xytraceset(p)
        except:
            print('INFO: did not find: ',p)
            continue
        dic[k][cam]['SIGMAX'] = psf.xsig_vs_wave(fiber,dicLines[cam[0]]['LINE'])
        dic[k][cam]['SIGMAY'] = psf.ysig_vs_wave(fiber,dicLines[cam[0]]['LINE'])
        dic[k][cam]['X'] = psf.x_vs_wave(fiber,dicLines[cam[0]]['LINE'])
        dic[k][cam]['Y'] = psf.y_vs_wave(fiber,dicLines[cam[0]]['LINE'])

    ###
    for exptime in sorted(set([ dic[tk]['EXPTIME'] for tk in dic.keys() ])):
        f, ax = plt.subplots(nrows=4, ncols=1, figsize=(10,10))
        plt.subplots_adjust(top=0.95,hspace=0.,wspace=0.)
        plt.suptitle(r'$\mathrm{SP'+str(cam[-1])+', cam = '+cam+',\, exptime='+str(exptime)+'}$',fontsize=20)
        for i,k in enumerate(['SIGMAX','SIGMAY','X','Y']):

            y = sp.array([ dic[tk][cam][k] for tk in dic.keys() if dic[tk]['EXPTIME']==exptime and k in dic[tk][cam].keys() ])
            if y.size==0: continue
            if xaxis=='DATE_OBS':
                x = sp.array([ dic[tk]['DATE_OBS'] for tk in dic.keys() if dic[tk]['EXPTIME']==exptime and k in dic[tk][cam].keys() ])
                w = sp.argsort(x)
                x = x[w]
                y = y[w]
                x *= 24.*3600.
                x -= x[0]
                linemarker = 'o-'
            else:
                x = sp.array([ dic[tk]['CAM'][cam][xaxis] for tk in dic.keys() if dic[tk]['EXPTIME']==exptime and k in dic[tk][cam].keys() ])
                linemarker = 'o'
            y -= y[0]

            ax[i].plot(x,y,linemarker)
            if i==len(['SIGMAX','SIGMAY','X','Y'])-1:
                ax[i].set_xlabel(r'$\mathrm{'+xaxis.replace('_','')+'}$')
            else:
                ax[i].set_xticklabels([])
            ax[i].grid()
            ax[i].set_ylabel(r'$\mathrm{'+k+'} \, [\mathrm{pix}]$')

        #plt.show()
        plt.savefig('{}/psf-vs-{}-cam-{}-exptime-{}.png'.format(outdir,xaxis,cam,exptime))
        plt.clf()

    return
Ejemplo n.º 2
0
    def __init__(self, filename):

        print("desispec.psf is DEPRECATED, PLEASE USE desispec.xytraceset")

        self.traceset = read_xytraceset(filename)

        # all in traceset now.
        # psf kept to ease transition
        self.npix_y = self.traceset.npix_y
        self.xcoeff = self.traceset.x_vs_wave_traceset._coeff  # in traceset
        self.ycoeff = self.traceset.y_vs_wave_traceset._coeff  # in traceset
        self.wmin = self.traceset.wavemin  # in traceset
        self.wmax = self.traceset.wavemax  # in traceset
        self.nspec = self.traceset.nspec  # in traceset
        self.ncoeff = self.traceset.x_vs_wave_traceset._coeff.shape[1]  #
        self.traceset.wave_vs_y(
            0, 100.
        )  # call wave_vs_y  for creation of wave_vs_y_traceset and consistent inversion
        self.icoeff = self.traceset.wave_vs_y_traceset._coeff  # in traceset
        self.ymin = self.traceset.wave_vs_y_traceset._xmin  # in traceset
        self.ymax = self.traceset.wave_vs_y_traceset._xmax  # in traceset
Ejemplo n.º 3
0
def fit_trace_shifts(image, args):

    global psfs

    log = get_logger()

    log.info("starting")

    tset = read_xytraceset(args.psf)
    wavemin = tset.wavemin
    wavemax = tset.wavemax
    xcoef = tset.x_vs_wave_traceset._coeff
    ycoef = tset.y_vs_wave_traceset._coeff

    nfibers = xcoef.shape[0]
    log.info(
        "read PSF trace with xcoef.shape = {} , ycoef.shape = {} , and wavelength range {}:{}"
        .format(xcoef.shape, ycoef.shape, int(wavemin), int(wavemax)))

    lines = None
    if args.lines is not None:
        log.info("We will fit the image using the psf model and lines")

        # read lines
        lines = np.loadtxt(args.lines, usecols=[0])
        ok = (lines > wavemin) & (lines < wavemax)
        log.info(
            "read {} lines in {}, with {} of them in traces wavelength range".
            format(len(lines), args.lines, np.sum(ok)))
        lines = lines[ok]

    else:
        log.info(
            "We will do an internal calibration of trace coordinates without using the psf shape in a first step"
        )

    internal_wavelength_calib = (not args.continuum)

    if args.auto:
        log.debug("read flavor of input image {}".format(args.image))
        hdus = pyfits.open(args.image)
        if "FLAVOR" not in hdus[0].header:
            log.error(
                "no FLAVOR keyword in image header, cannot run with --auto option"
            )
            raise KeyError(
                "no FLAVOR keyword in image header, cannot run with --auto option"
            )
        flavor = hdus[0].header["FLAVOR"].strip().lower()
        hdus.close()
        log.info("Input is a '{}' image".format(flavor))
        if flavor == "flat":
            internal_wavelength_calib = False
        elif flavor == "arc":
            internal_wavelength_calib = True
            args.arc_lamps = True
        else:
            internal_wavelength_calib = True
            args.sky = True
        log.info("wavelength calib, internal={}, sky={} , arc_lamps={}".format(
            internal_wavelength_calib, args.sky, args.arc_lamps))

    spectrum_filename = args.spectrum
    if args.sky:
        srch_file = "data/spec-sky.dat"
        if not resource_exists('desispec', srch_file):
            log.error("Cannot find sky spectrum file {:s}".format(srch_file))
            raise RuntimeError(
                "Cannot find sky spectrum file {:s}".format(srch_file))
        spectrum_filename = resource_filename('desispec', srch_file)
    elif args.arc_lamps:
        srch_file = "data/spec-arc-lamps.dat"
        if not resource_exists('desispec', srch_file):
            log.error(
                "Cannot find arc lamps spectrum file {:s}".format(srch_file))
            raise RuntimeError(
                "Cannot find arc lamps spectrum file {:s}".format(srch_file))
        spectrum_filename = resource_filename('desispec', srch_file)
    if spectrum_filename is not None:
        log.info(
            "Use external calibration from cross-correlation with {}".format(
                spectrum_filename))

    if args.nfibers is not None:
        nfibers = args.nfibers  # FOR DEBUGGING

    fibers = np.arange(nfibers)

    if lines is not None:

        # use a forward modeling of the image
        # it's slower and works only for individual lines
        # it's in principle more accurate
        # but gives systematic residuals for complex spectra like the sky

        psf = read_specter_psf(args.psf)

        x, y, dx, ex, dy, ey, fiber_xy, wave_xy = compute_dx_dy_using_psf(
            psf, image, fibers, lines)
        x_for_dx = x
        y_for_dx = y
        fiber_for_dx = fiber_xy
        wave_for_dx = wave_xy
        x_for_dy = x
        y_for_dy = y
        fiber_for_dy = fiber_xy
        wave_for_dy = wave_xy

    else:

        # internal calibration method that does not use the psf
        # nor a prior set of lines. this method is much faster

        # measure x shifts
        x_for_dx, y_for_dx, dx, ex, fiber_for_dx, wave_for_dx = compute_dx_from_cross_dispersion_profiles(
            xcoef,
            ycoef,
            wavemin,
            wavemax,
            image=image,
            fibers=fibers,
            width=args.width,
            deg=args.degxy,
            image_rebin=args.ccd_rows_rebin)
        if internal_wavelength_calib:
            # measure y shifts
            x_for_dy, y_for_dy, dy, ey, fiber_for_dy, wave_for_dy = compute_dy_using_boxcar_extraction(
                tset, image=image, fibers=fibers, width=args.width)
            mdy = np.median(dy)
            log.info("Subtract median(dy)={}".format(mdy))
            dy -= mdy  # remove median, because this is an internal calibration

        else:
            # duplicate dx results with zero shift to avoid write special case code below
            x_for_dy = x_for_dx.copy()
            y_for_dy = y_for_dx.copy()
            dy = np.zeros(dx.shape)
            ey = 1.e-6 * np.ones(ex.shape)
            fiber_for_dy = fiber_for_dx.copy()
            wave_for_dy = wave_for_dx.copy()

    degxx = args.degxx
    degxy = args.degxy
    degyx = args.degyx
    degyy = args.degyy

    while (True):  # loop because polynomial degrees could be reduced

        log.info(
            "polynomial fit of measured offsets with degx=(%d,%d) degy=(%d,%d)"
            % (degxx, degxy, degyx, degyy))
        try:
            dx_coeff, dx_coeff_covariance, dx_errorfloor, dx_mod, dx_mask = polynomial_fit(
                z=dx, ez=ex, xx=x_for_dx, yy=y_for_dx, degx=degxx, degy=degxy)
            dy_coeff, dy_coeff_covariance, dy_errorfloor, dy_mod, dy_mask = polynomial_fit(
                z=dy, ez=ey, xx=x_for_dy, yy=y_for_dy, degx=degyx, degy=degyy)

            log.info("dx dy error floor = %4.3f %4.3f pixels" %
                     (dx_errorfloor, dy_errorfloor))

            log.info("check fit uncertainties are ok on edge of CCD")

            merr = 0.
            for fiber in [0, nfibers - 1]:
                for rw in [-1, 1]:
                    tx = legval(rw, xcoef[fiber])
                    ty = legval(rw, ycoef[fiber])
                    m = monomials(tx, ty, degxx, degxy)
                    tdx = np.inner(dx_coeff, m)
                    tsx = np.sqrt(np.inner(m, dx_coeff_covariance.dot(m)))
                    m = monomials(tx, ty, degyx, degyy)
                    tdy = np.inner(dy_coeff, m)
                    tsy = np.sqrt(np.inner(m, dy_coeff_covariance.dot(m)))
                    merr = max(merr, tsx)
                    merr = max(merr, tsy)
            log.info("max edge shift error = %4.3f pixels" % merr)
            if degxx == 0 and degxy == 0 and degyx == 0 and degyy == 0:
                break

        except (LinAlgError, ValueError):
            log.warning(
                "polynomial fit failed with degx=(%d,%d) degy=(%d,%d)" %
                (degxx, degxy, degyx, degyy))
            if degxx == 0 and degxy == 0 and degyx == 0 and degyy == 0:
                log.error(
                    "polynomial degrees are already 0. we can fit the offsets")
                raise RuntimeError(
                    "polynomial degrees are already 0. we can fit the offsets")
            merr = 100000.  # this will lower the pol. degree.

        if merr > args.max_error:
            if merr != 100000.:
                log.warning(
                    "max edge shift error = %4.3f pixels is too large, reducing degrees"
                    % merr)

            if degxy > 0 and degyy > 0 and degxy > degxx and degyy > degyx:  # first along wavelength
                if degxy > 0: degxy -= 1
                if degyy > 0: degyy -= 1
            else:  # then along fiber
                if degxx > 0: degxx -= 1
                if degyx > 0: degyx -= 1
        else:
            # error is ok, so we quit the loop
            break

    # write this for debugging
    if args.outoffsets:
        file = open(args.outoffsets, "w")
        file.write(
            "# axis wave fiber x y delta error polval (axis 0=y axis1=x)\n")
        for e in range(dy.size):
            file.write("0 %f %d %f %f %f %f %f\n" %
                       (wave_for_dy[e], fiber_for_dy[e], x_for_dy[e],
                        y_for_dy[e], dy[e], ey[e], dy_mod[e]))
        for e in range(dx.size):
            file.write("1 %f %d %f %f %f %f %f\n" %
                       (wave_for_dx[e], fiber_for_dx[e], x_for_dx[e],
                        y_for_dx[e], dx[e], ex[e], dx_mod[e]))
        file.close()
        log.info("wrote offsets in ASCII file %s" % args.outoffsets)

    # print central shift
    mx = np.median(x_for_dx)
    my = np.median(y_for_dx)
    m = monomials(mx, my, degxx, degxy)
    mdx = np.inner(dx_coeff, m)
    mex = np.sqrt(np.inner(m, dx_coeff_covariance.dot(m)))

    mx = np.median(x_for_dy)
    my = np.median(y_for_dy)
    m = monomials(mx, my, degyx, degyy)
    mdy = np.inner(dy_coeff, m)
    mey = np.sqrt(np.inner(m, dy_coeff_covariance.dot(m)))
    log.info("central shifts dx = %4.3f +- %4.3f dy = %4.3f +- %4.3f " %
             (mdx, mex, mdy, mey))

    # for each fiber, apply offsets and recompute legendre polynomial
    log.info("for each fiber, apply offsets and recompute legendre polynomial")

    # compute x y to record max deviations
    wave = np.linspace(tset.wavemin, tset.wavemax, 5)
    x0 = np.zeros((tset.nspec, wave.size))
    y0 = np.zeros((tset.nspec, wave.size))
    for s in range(tset.nspec):
        x0[s] = tset.x_vs_wave(s, wave)
        y0[s] = tset.y_vs_wave(s, wave)

    tset.x_vs_wave_traceset._coeff, tset.y_vs_wave_traceset._coeff = recompute_legendre_coefficients(
        xcoef=tset.x_vs_wave_traceset._coeff,
        ycoef=tset.y_vs_wave_traceset._coeff,
        wavemin=tset.wavemin,
        wavemax=tset.wavemax,
        degxx=degxx,
        degxy=degxy,
        degyx=degyx,
        degyy=degyy,
        dx_coeff=dx_coeff,
        dy_coeff=dy_coeff)

    # use an input spectrum as an external calibration of wavelength
    if spectrum_filename is not None:
        # the psf is used only to convolve the input spectrum
        # the traceset of the psf is not used here
        psf = read_specter_psf(args.psf)
        tset.y_vs_wave_traceset._coeff = shift_ycoef_using_external_spectrum(
            psf=psf,
            xytraceset=tset,
            image=image,
            fibers=fibers,
            spectrum_filename=spectrum_filename,
            degyy=args.degyy,
            width=7)

    x = np.zeros(x0.shape)
    y = np.zeros(x0.shape)
    for s in range(tset.nspec):
        x[s] = tset.x_vs_wave(s, wave)
        y[s] = tset.y_vs_wave(s, wave)
    dx = x - x0
    dy = y - y0
    if tset.meta is None: tset.meta = dict()
    tset.meta["MEANDX"] = np.mean(dx)
    tset.meta["MINDX"] = np.min(dx)
    tset.meta["MAXDX"] = np.max(dx)
    tset.meta["MEANDY"] = np.mean(dy)
    tset.meta["MINDY"] = np.min(dy)
    tset.meta["MAXDY"] = np.max(dy)

    return tset
Ejemplo n.º 4
0
    h = fitsio.FITS(dic[cam]['PATH'])
    head = h['IMAGE'].read_header()
    camName = head['CAMERA'].strip()
    d = h['IMAGE'].read()
    w = h['MASK'].read()==0.
    td = d.copy()
    td[~w] = sp.nan
    h.close()

    if getattr(args,'{}_psf_path'.format(cam)) is None:
        cfinder = CalibFinder([head])
        p = cfinder.findfile('PSF')
    else:
        p = getattr(args,'{}_psf_path'.format(cam))
    dic[cam]['PSF'] = read_xytraceset(p)

    ### image of the PSF
    xmin = min( dic[cam]['PSF'].x_vs_wave(fmin,dic[cam]['LINE']['LINE']), dic[cam]['PSF'].x_vs_wave(fmax,dic[cam]['LINE']['LINE']) )
    xmax = max( dic[cam]['PSF'].x_vs_wave(fmin,dic[cam]['LINE']['LINE']), dic[cam]['PSF'].x_vs_wave(fmax,dic[cam]['LINE']['LINE']) )
    ymin = min( dic[cam]['PSF'].y_vs_wave(fmin,dic[cam]['LINE']['LINE']), dic[cam]['PSF'].y_vs_wave(fmax,dic[cam]['LINE']['LINE']) )
    ymax = max( dic[cam]['PSF'].y_vs_wave(fmin,dic[cam]['LINE']['LINE']), dic[cam]['PSF'].y_vs_wave(fmax,dic[cam]['LINE']['LINE']) )
    ax[2*i].imshow(td,interpolation='nearest',origin='lower',cmap='hot')
    ax[2*i].set_xlim(sp.floor(xmin-offset),sp.floor(xmax+offset))
    ax[2*i].set_ylim(sp.floor(ymin-offset),sp.floor(ymax+offset))
    ax[2*i].set_ylabel(r'$\mathrm{y-axis}$')

    x = sp.array([ dic[cam]['PSF'].x_vs_wave(f,dic[cam]['LINE']['LINE']) for f in range(fmin-1,fmax+2) ])
    y = sp.array([ dic[cam]['PSF'].y_vs_wave(f,dic[cam]['LINE']['LINE']) for f in range(fmin-1,fmax+2) ])
    fxy = sp.interpolate.interp1d(x,y)
    ax[2*i].plot(x,y,color='white',linestyle='--',linewidth=1)
Ejemplo n.º 5
0
def preproc(rawimage,
            header,
            primary_header,
            bias=True,
            dark=True,
            pixflat=True,
            mask=True,
            bkgsub=False,
            nocosmic=False,
            cosmics_nsig=6,
            cosmics_cfudge=3.,
            cosmics_c2fudge=0.5,
            ccd_calibration_filename=None,
            nocrosstalk=False,
            nogain=False,
            overscan_per_row=False,
            use_overscan_row=False,
            use_savgol=None,
            nodarktrail=False,
            remove_scattered_light=False,
            psf_filename=None,
            bias_img=None):
    '''
    preprocess image using metadata in header

    image = ((rawimage-bias-overscan)*gain)/pixflat

    Args:
        rawimage : 2D numpy array directly from raw data file
        header : dict-like metadata, e.g. from FITS header, with keywords
            CAMERA, BIASSECx, DATASECx, CCDSECx
            where x = A, B, C, D for each of the 4 amplifiers
            (also supports old naming convention 1, 2, 3, 4).
        primary_header: dict-like metadata fit keywords EXPTIME, DOSVER
            DATE-OBS is also required if bias, pixflat, or mask=True

    Optional bias, pixflat, and mask can each be:
        False: don't apply that step
        True: use default calibration data for that night
        ndarray: use that array
        filename (str or unicode): read HDU 0 and use that

    Optional overscan features:
        overscan_per_row : bool,  Subtract the overscan_col values
            row by row from the data.
        use_overscan_row : bool,  Subtract off the overscan_row
            from the data (default: False).  Requires ORSEC in
            the Header
        use_savgol : bool,  Specify whether to use Savitsky-Golay filter for
            the overscan.   (default: False).  Requires use_overscan_row=True
            to have any effect.

    Optional background subtraction with median filtering if bkgsub=True

    Optional disabling of cosmic ray rejection if nocosmic=True
    Optional disabling of dark trail correction if nodarktrail=True

    Optional bias image (testing only) may be provided by bias_img=

    Optional tuning of cosmic ray rejection parameters:
        cosmics_nsig: number of sigma above background required
        cosmics_cfudge: number of sigma inconsistent with PSF required
        cosmics_c2fudge:  fudge factor applied to PSF

    Optional fit and subtraction of scattered light

    Returns Image object with member variables:
        pix : 2D preprocessed image in units of electrons per pixel
        ivar : 2D inverse variance of image
        mask : 2D mask of image (0=good)
        readnoise : 2D per-pixel readnoise of image
        meta : metadata dictionary
        TODO: define what keywords are included

    preprocessing includes the following steps:
        - bias image subtraction
        - overscan subtraction (from BIASSEC* keyword defined regions)
        - readnoise estimation (from BIASSEC* keyword defined regions)
        - gain correction (from GAIN* keywords)
        - pixel flat correction
        - cosmic ray masking
        - propagation of input known bad pixel mask
        - inverse variance estimation

    Notes:

    The bias image is subtracted before any other calculation to remove any
    non-uniformities in the overscan regions prior to calculating overscan
    levels and readnoise.

    The readnoise is an image not just one number per amp, because the pixflat
    image also affects the interpreted readnoise.

    The inverse variance is estimated from the readnoise and the image itself,
    and thus is biased.
    '''
    log = get_logger()

    header = header.copy()

    cfinder = None

    if ccd_calibration_filename is not False:
        cfinder = CalibFinder([header, primary_header],
                              yaml_file=ccd_calibration_filename)

    #- TODO: Check for required keywords first

    #- Subtract bias image
    camera = header['CAMERA'].lower()

    #- convert rawimage to float64 : this is the output format of read_image
    rawimage = rawimage.astype(np.float64)

    # Savgol
    if cfinder and cfinder.haskey("USE_ORSEC"):
        use_overscan_row = cfinder.value("USE_ORSEC")
    if cfinder and cfinder.haskey("SAVGOL"):
        use_savgol = cfinder.value("SAVGOL")

    # Set bias image, as desired
    if bias_img is None:
        bias = get_calibration_image(cfinder, "BIAS", bias)
    else:
        bias = bias_img

    if bias is not False:  #- it's an array
        if bias.shape == rawimage.shape:
            log.info("subtracting bias")
            rawimage = rawimage - bias
        else:
            raise ValueError('shape mismatch bias {} != rawimage {}'.format(
                bias.shape, rawimage.shape))

    #- Check if this file uses amp names 1,2,3,4 (old) or A,B,C,D (new)
    amp_ids = get_amp_ids(header)

    #- Double check that we have the necessary keywords
    missing_keywords = list()
    for prefix in ['CCDSEC', 'BIASSEC']:
        for amp in amp_ids:
            key = prefix + amp
            if not key in header:
                log.error('No {} keyword in header'.format(key))
                missing_keywords.append(key)

    if len(missing_keywords) > 0:
        raise KeyError("Missing keywords {}".format(
            ' '.join(missing_keywords)))

    #- Output arrays
    ny = 0
    nx = 0
    for amp in amp_ids:
        yy, xx = parse_sec_keyword(header['CCDSEC%s' % amp])
        ny = max(ny, yy.stop)
        nx = max(nx, xx.stop)
    image = np.zeros((ny, nx))

    readnoise = np.zeros_like(image)

    #- Load mask
    mask = get_calibration_image(cfinder, "MASK", mask)

    if mask is False:
        mask = np.zeros(image.shape, dtype=np.int32)
    else:
        if mask.shape != image.shape:
            raise ValueError('shape mismatch mask {} != image {}'.format(
                mask.shape, image.shape))

    #- Load dark
    dark = get_calibration_image(cfinder, "DARK", dark)

    if dark is not False:
        if dark.shape != image.shape:
            log.error('shape mismatch dark {} != image {}'.format(
                dark.shape, image.shape))
            raise ValueError('shape mismatch dark {} != image {}'.format(
                dark.shape, image.shape))

        if cfinder and cfinder.haskey("EXPTIMEKEY"):
            exptime_key = cfinder.value("EXPTIMEKEY")
            log.info("Using exposure time keyword %s for dark normalization" %
                     exptime_key)
        else:
            exptime_key = "EXPTIME"
        exptime = primary_header[exptime_key]

        log.info("Multiplying dark by exptime %f" % (exptime))
        dark *= exptime

    for amp in amp_ids:
        # Grab the sections
        ov_col = parse_sec_keyword(header['BIASSEC' + amp])
        if 'ORSEC' + amp in header.keys():
            ov_row = parse_sec_keyword(header['ORSEC' + amp])
        elif use_overscan_row:
            log.error('No ORSEC{} keyword; not using overscan_row'.format(amp))
            use_overscan_row = False

        if nogain:
            gain = 1.
        else:
            #- Initial teststand data may be missing GAIN* keywords; don't crash
            if 'GAIN' + amp in header:
                gain = header['GAIN' + amp]  #- gain = electrons / ADU
            else:
                if cfinder and cfinder.haskey('GAIN' + amp):
                    gain = float(cfinder.value('GAIN' + amp))
                    log.info('Using GAIN{}={} from calibration data'.format(
                        amp, gain))
                else:
                    gain = 1.0
                    log.warning(
                        'Missing keyword GAIN{} in header and nothing in calib data; using {}'
                        .format(amp, gain))

        #- Add saturation level
        if 'SATURLEV' + amp in header:
            saturlev = header['SATURLEV' + amp]  # in electrons
        else:
            if cfinder and cfinder.haskey('SATURLEV' + amp):
                saturlev = float(cfinder.value('SATURLEV' + amp))
                log.info('Using SATURLEV{}={} from calibration data'.format(
                    amp, saturlev))
            else:
                saturlev = 200000
                log.warning(
                    'Missing keyword SATURLEV{} in header and nothing in calib data; using 200000'
                    .format(amp, saturlev))

        # Generate the overscan images
        raw_overscan_col = rawimage[ov_col].copy()

        if use_overscan_row:
            raw_overscan_row = rawimage[ov_row].copy()
            overscan_row = np.zeros_like(raw_overscan_row)

            # Remove overscan_col from overscan_row
            raw_overscan_squared = rawimage[ov_row[0], ov_col[1]].copy()
            for row in range(raw_overscan_row.shape[0]):
                o, r = _overscan(raw_overscan_squared[row])
                overscan_row[row] = raw_overscan_row[row] - o

        # Now remove the overscan_col
        nrows = raw_overscan_col.shape[0]
        log.info("nrows in overscan=%d" % nrows)
        overscan_col = np.zeros(nrows)
        rdnoise = np.zeros(nrows)
        if (cfinder and cfinder.haskey('OVERSCAN' + amp)
                and cfinder.value("OVERSCAN" + amp).upper()
                == "PER_ROW") or overscan_per_row:
            log.info(
                "Subtracting overscan per row for amplifier %s of camera %s" %
                (amp, camera))
            for j in range(nrows):
                if np.isnan(np.sum(overscan_col[j])):
                    log.warning(
                        "NaN values in row %d of overscan of amplifier %s of camera %s"
                        % (j, amp, camera))
                    continue
                o, r = _overscan(raw_overscan_col[j])
                #log.info("%d %f %f"%(j,o,r))
                overscan_col[j] = o
                rdnoise[j] = r
        else:
            log.info(
                "Subtracting average overscan for amplifier %s of camera %s" %
                (amp, camera))
            o, r = _overscan(raw_overscan_col)
            overscan_col += o
            rdnoise += r

        rdnoise *= gain
        median_rdnoise = np.median(rdnoise)
        median_overscan = np.median(overscan_col)
        log.info("Median rdnoise and overscan= %f %f" %
                 (median_rdnoise, median_overscan))

        kk = parse_sec_keyword(header['CCDSEC' + amp])
        for j in range(nrows):
            readnoise[kk][j] = rdnoise[j]

        header['OVERSCN' + amp] = (median_overscan, 'ADUs (gain not applied)')
        if gain != 1:
            rdnoise_message = 'electrons (gain is applied)'
            gain_message = 'e/ADU (gain applied to image)'
        else:
            rdnoise_message = 'ADUs (gain not applied)'
            gain_message = 'gain not applied to image'
        header['OBSRDN' + amp] = (median_rdnoise, rdnoise_message)
        header['GAIN' + amp] = (gain, gain_message)

        #- Warn/error if measured readnoise is very different from expected if exists
        if 'RDNOISE' + amp in header:
            expected_readnoise = header['RDNOISE' + amp]
            if median_rdnoise < 0.5 * expected_readnoise:
                log.error(
                    'Amp {} measured readnoise {:.2f} < 0.5 * expected readnoise {:.2f}'
                    .format(amp, median_rdnoise, expected_readnoise))
            elif median_rdnoise < 0.9 * expected_readnoise:
                log.warning(
                    'Amp {} measured readnoise {:.2f} < 0.9 * expected readnoise {:.2f}'
                    .format(amp, median_rdnoise, expected_readnoise))
            elif median_rdnoise > 2.0 * expected_readnoise:
                log.error(
                    'Amp {} measured readnoise {:.2f} > 2 * expected readnoise {:.2f}'
                    .format(amp, median_rdnoise, expected_readnoise))
            elif median_rdnoise > 1.2 * expected_readnoise:
                log.warning(
                    'Amp {} measured readnoise {:.2f} > 1.2 * expected readnoise {:.2f}'
                    .format(amp, median_rdnoise, expected_readnoise))
        #else:
        #    log.warning('Expected readnoise keyword {} missing'.format('RDNOISE'+amp))

        log.info("Measured readnoise for AMP %s = %f" % (amp, median_rdnoise))

        #- subtract overscan from data region and apply gain
        jj = parse_sec_keyword(header['DATASEC' + amp])

        data = rawimage[jj].copy()
        # Subtract columns
        for k in range(nrows):
            data[k] -= overscan_col[k]
        # And now the rows
        if use_overscan_row:
            # Savgol?
            if use_savgol:
                log.info("Using savgol")
                collapse_oscan_row = np.zeros(overscan_row.shape[1])
                for col in range(overscan_row.shape[1]):
                    o, _ = _overscan(overscan_row[:, col])
                    collapse_oscan_row[col] = o
                oscan_row = _savgol_clipped(collapse_oscan_row, niter=0)
                oimg_row = np.outer(np.ones(data.shape[0]), oscan_row)
                data -= oimg_row
            else:
                o, r = _overscan(overscan_row)
                data -= o

        #- apply saturlev (defined in ADU), prior to multiplication by gain
        saturated = (rawimage[jj] >= saturlev)
        mask[kk][saturated] |= ccdmask.SATURATED

        #- ADC to electrons
        image[kk] = data * gain

    if not nocrosstalk:
        #- apply cross-talk

        # the ccd looks like :
        # C D
        # A B
        # for cross talk, we need a symmetric 4x4 flip_matrix
        # of coordinates ABCD giving flip of both axis
        # when computing crosstalk of
        #    A   B   C   D
        #
        # A  AA  AB  AC  AD
        # B  BA  BB  BC  BD
        # C  CA  CB  CC  CD
        # D  DA  DB  DC  BB
        # orientation_matrix_defines change of orientation
        #
        fip_axis_0 = np.array([[1, 1, -1, -1], [1, 1, -1, -1], [-1, -1, 1, 1],
                               [-1, -1, 1, 1]])
        fip_axis_1 = np.array([[1, -1, 1, -1], [-1, 1, -1, 1], [1, -1, 1, -1],
                               [-1, 1, -1, 1]])

        for a1 in range(len(amp_ids)):
            amp1 = amp_ids[a1]
            ii1 = parse_sec_keyword(header['CCDSEC' + amp1])
            a1flux = image[ii1]
            #a1mask=mask[ii1]

            for a2 in range(len(amp_ids)):
                if a1 == a2:
                    continue
                amp2 = amp_ids[a2]
                if cfinder is None: continue
                if not cfinder.haskey("CROSSTALK%s%s" % (amp1, amp2)): continue
                crosstalk = cfinder.value("CROSSTALK%s%s" % (amp1, amp2))
                if crosstalk == 0.: continue
                log.info("Correct for crosstalk=%f from AMP %s into %s" %
                         (crosstalk, amp1, amp2))
                a12flux = crosstalk * a1flux.copy()
                #a12mask=a1mask.copy()
                if fip_axis_0[a1, a2] == -1:
                    a12flux = a12flux[::-1]
                    #a12mask=a12mask[::-1]
                if fip_axis_1[a1, a2] == -1:
                    a12flux = a12flux[:, ::-1]
                    #a12mask=a12mask[:,::-1]
                ii2 = parse_sec_keyword(header['CCDSEC' + amp2])
                image[ii2] -= a12flux
                # mask[ii2]  |= a12mask (not sure we really need to propagate the mask)

    #- Poisson noise variance (prior to dark subtraction and prior to pixel flat field)
    #- This is biasing, but that's what we have for now
    poisson_var = image.clip(0)

    #- subtract dark after multiplication by gain
    if dark is not False:
        log.info("subtracting dark for amp %s" % amp)
        image -= dark

    #- Correct for dark trails if any
    if not nodarktrail and cfinder is not None:
        for amp in amp_ids:
            if cfinder.haskey("DARKTRAILAMP%s" % amp):
                amplitude = cfinder.value("DARKTRAILAMP%s" % amp)
                width = cfinder.value("DARKTRAILWIDTH%s" % amp)
                ii = _parse_sec_keyword(header["CCDSEC" + amp])
                log.info(
                    "Removing dark trails for amplifier %s with width=%3.1f and amplitude=%5.4f"
                    % (amp, width, amplitude))
                correct_dark_trail(image,
                                   ii,
                                   left=((amp == "B") | (amp == "D")),
                                   width=width,
                                   amplitude=amplitude)

    #- Divide by pixflat image
    pixflat = get_calibration_image(cfinder, "PIXFLAT", pixflat)
    if pixflat is not False:
        if pixflat.shape != image.shape:
            raise ValueError('shape mismatch pixflat {} != image {}'.format(
                pixflat.shape, image.shape))

        almost_zero = 0.001

        if np.all(pixflat > almost_zero):
            image /= pixflat
            readnoise /= pixflat
            poisson_var /= pixflat**2
        else:
            good = (pixflat > almost_zero)
            image[good] /= pixflat[good]
            readnoise[good] /= pixflat[good]
            poisson_var[good] /= pixflat[good]**2
            mask[~good] |= ccdmask.PIXFLATZERO

        lowpixflat = (0 < pixflat) & (pixflat < 0.1)
        if np.any(lowpixflat):
            mask[lowpixflat] |= ccdmask.PIXFLATLOW

    #- Inverse variance, estimated directly from the data (BEWARE: biased!)
    var = poisson_var + readnoise**2
    ivar = np.zeros(var.shape)
    ivar[var > 0] = 1.0 / var[var > 0]

    #- Ridiculously high readnoise is bad
    mask[readnoise > 100] |= ccdmask.BADREADNOISE

    if bkgsub:
        bkg = _background(image, header)
        image -= bkg

    img = Image(image,
                ivar=ivar,
                mask=mask,
                meta=header,
                readnoise=readnoise,
                camera=camera)

    #- update img.mask to mask cosmic rays

    if not nocosmic:
        cosmics.reject_cosmic_rays(img,
                                   nsig=cosmics_nsig,
                                   cfudge=cosmics_cfudge,
                                   c2fudge=cosmics_c2fudge)

    if remove_scattered_light:
        if psf_filename is None:
            psf_filename = cfinder.findfile("PSF")
        xyset = read_xytraceset(psf_filename)
        img.pix -= model_scattered_light(img, xyset)

    return img
Ejemplo n.º 6
0
def main(args=None):

    if args is None:
        args = parse()
    elif isinstance(args, (list, tuple)):
        args = parse(args)

    t0 = time.time()
    log = get_logger()

    # guess if it is a preprocessed or a raw image
    hdulist = fits.open(args.image)
    is_input_preprocessed = ("IMAGE" in hdulist) & ("IVAR" in hdulist)
    primary_header = hdulist[0].header
    hdulist.close()

    if is_input_preprocessed:
        image = read_image(args.image)
    else:
        if args.camera is None:
            print(
                "ERROR: Need to specify camera to open a raw fits image (with all cameras in different fits HDUs)"
            )
            print(
                "Try adding the option '--camera xx', with xx in {brz}{0-9}, like r7,  or type 'desi_qproc --help' for more options"
            )
            sys.exit(12)
        image = read_raw(args.image, args.camera, fill_header=[
            1,
        ])

    if args.auto:
        log.debug("AUTOMATIC MODE")
        try:
            night = image.meta['NIGHT']
            if not 'EXPID' in image.meta:
                if 'EXPNUM' in image.meta:
                    log.warning('using EXPNUM {} for EXPID'.format(
                        image.meta['EXPNUM']))
                    image.meta['EXPID'] = image.meta['EXPNUM']
            expid = image.meta['EXPID']
        except KeyError as e:
            log.error(
                "Need at least NIGHT and EXPID (or EXPNUM) to run in auto mode. Retry without the --auto option."
            )
            log.error(str(e))
            sys.exit(12)

        indir = os.path.dirname(args.image)
        if args.fibermap is None:
            filename = '{}/fibermap-{:08d}.fits'.format(indir, expid)
            if os.path.isfile(filename):
                log.debug("auto-mode: found a fibermap, {}, using it!".format(
                    filename))
                args.fibermap = filename
        if args.output_preproc is None:
            if not is_input_preprocessed:
                args.output_preproc = '{}/preproc-{}-{:08d}.fits'.format(
                    args.auto_output_dir, args.camera.lower(), expid)
                log.debug("auto-mode: will write preproc in " +
                          args.output_preproc)
            else:
                log.debug(
                    "auto-mode: will not write preproc because input is a preprocessed image"
                )

        if args.auto_output_dir != '.':
            if not os.path.isdir(args.auto_output_dir):
                log.debug("auto-mode: creating directory " +
                          args.auto_output_dir)
                os.makedirs(args.auto_output_dir)

    if args.output_preproc is not None:
        write_image(args.output_preproc, image)

    cfinder = None

    if args.psf is None:
        if cfinder is None:
            cfinder = CalibFinder([image.meta, primary_header])
        args.psf = cfinder.findfile("PSF")
        log.info(" Using PSF {}".format(args.psf))

    tset = read_xytraceset(args.psf)

    # add fibermap
    if args.fibermap:
        if os.path.isfile(args.fibermap):
            fibermap = read_fibermap(args.fibermap)
        else:
            log.error("no fibermap file {}".format(args.fibermap))
            fibermap = None
    else:
        fibermap = None

    if "OBSTYPE" in image.meta:
        obstype = image.meta["OBSTYPE"].upper()
        image.meta["OBSTYPE"] = obstype  # make sure it's upper case
        qframe = None
    else:
        log.warning("No OBSTYPE keyword, trying to guess ...")
        qframe = qproc_boxcar_extraction(tset,
                                         image,
                                         width=args.width,
                                         fibermap=fibermap)
        obstype = check_qframe_flavor(
            qframe, input_flavor=image.meta["FLAVOR"]).upper()
        image.meta["OBSTYPE"] = obstype

    log.info("OBSTYPE = '{}'".format(obstype))

    if args.auto:

        # now set the things to do
        if obstype == "SKY" or obstype == "TWILIGHT" or obstype == "SCIENCE":

            args.shift_psf = True
            args.output_psf = '{}/psf-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)
            args.output_rawframe = '{}/qframe-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)
            args.apply_fiberflat = True
            args.skysub = True
            args.output_skyframe = '{}/qsky-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)
            args.fluxcalib = True
            args.outframe = '{}/qcframe-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)

        elif obstype == "ARC" or obstype == "TESTARC":

            args.shift_psf = True
            args.output_psf = '{}/psf-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)
            args.output_rawframe = '{}/qframe-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)
            args.compute_lsf_sigma = True

        elif obstype == "FLAT" or obstype == "TESTFLAT":
            args.shift_psf = True
            args.output_psf = '{}/psf-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)
            args.output_rawframe = '{}/qframe-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)
            args.compute_fiberflat = '{}/qfiberflat-{}-{:08d}.fits'.format(
                args.auto_output_dir, args.camera, expid)

    if args.shift_psf:

        # using the trace shift script
        if args.auto:
            options = option_list({
                "psf":
                args.psf,
                "image":
                "dummy",
                "outpsf":
                "dummy",
                "continuum": ((obstype == "FLAT") | (obstype == "TESTFLAT")),
                "sky": ((obstype == "SCIENCE") | (obstype == "SKY"))
            })
        else:
            options = option_list({
                "psf": args.psf,
                "image": "dummy",
                "outpsf": "dummy"
            })
        tmp_args = trace_shifts_script.parse(options=options)
        tset = trace_shifts_script.fit_trace_shifts(image=image, args=tmp_args)

    qframe = qproc_boxcar_extraction(tset,
                                     image,
                                     width=args.width,
                                     fibermap=fibermap)

    if tset.meta is not None:
        # add traceshift info in the qframe, this will be saved in the qframe header
        if qframe.meta is None:
            qframe.meta = dict()
        for k in tset.meta.keys():
            qframe.meta[k] = tset.meta[k]

    if args.output_rawframe is not None:
        write_qframe(args.output_rawframe, qframe)
        log.info("wrote raw extracted frame in {}".format(
            args.output_rawframe))

    if args.compute_lsf_sigma:
        tset = process_arc(qframe, tset, linelist=None, npoly=2, nbins=2)

    if args.output_psf is not None:
        for k in qframe.meta:
            if k not in tset.meta:
                tset.meta[k] = qframe.meta[k]
        write_xytraceset(args.output_psf, tset)

    if args.compute_fiberflat is not None:
        fiberflat = qproc_compute_fiberflat(qframe)
        #write_qframe(args.compute_fiberflat,qflat)
        write_fiberflat(args.compute_fiberflat, fiberflat, header=qframe.meta)
        log.info("wrote fiberflat in {}".format(args.compute_fiberflat))

    if args.apply_fiberflat or args.input_fiberflat:

        if args.input_fiberflat is None:
            if cfinder is None:
                cfinder = CalibFinder([image.meta, primary_header])
            try:
                args.input_fiberflat = cfinder.findfile("FIBERFLAT")
            except KeyError as e:
                log.error("no FIBERFLAT for this spectro config")
                sys.exit(12)
        log.info("applying fiber flat {}".format(args.input_fiberflat))
        flat = read_fiberflat(args.input_fiberflat)
        qproc_apply_fiberflat(qframe, flat)

    if args.skysub:
        log.info("sky subtraction")
        if args.output_skyframe is not None:
            skyflux = qproc_sky_subtraction(qframe, return_skymodel=True)
            sqframe = QFrame(qframe.wave, skyflux, np.ones(skyflux.shape))
            write_qframe(args.output_skyframe, sqframe)
            log.info("wrote sky model in {}".format(args.output_skyframe))
        else:
            qproc_sky_subtraction(qframe)

    if args.fluxcalib:
        if cfinder is None:
            cfinder = CalibFinder([image.meta, primary_header])
        # check for flux calib
        if cfinder.haskey("FLUXCALIB"):
            fluxcalib_filename = cfinder.findfile("FLUXCALIB")
            fluxcalib = read_average_flux_calibration(fluxcalib_filename)
            log.info("read average calib in {}".format(fluxcalib_filename))
            seeing = qframe.meta["SEEING"]
            airmass = qframe.meta["AIRMASS"]
            exptime = qframe.meta["EXPTIME"]
            exposure_calib = fluxcalib.value(seeing=seeing, airmass=airmass)
            for q in range(qframe.nspec):
                fiber_calib = np.interp(qframe.wave[q], fluxcalib.wave,
                                        exposure_calib) * exptime
                inv_calib = (fiber_calib > 0) / (fiber_calib +
                                                 (fiber_calib == 0))
                qframe.flux[q] *= inv_calib
                qframe.ivar[q] *= fiber_calib**2 * (fiber_calib > 0)

            # add keyword in header giving the calibration factor applied at a reference wavelength
            band = qframe.meta["CAMERA"].upper()[0]
            if band == "B":
                refwave = 4500
            elif band == "R":
                refwave = 6500
            else:
                refwave = 8500
            calvalue = np.interp(refwave, fluxcalib.wave,
                                 exposure_calib) * exptime
            qframe.meta["CALWAVE"] = refwave
            qframe.meta["CALVALUE"] = calvalue
        else:
            log.error(
                "Cannot calibrate fluxes because no FLUXCALIB keywork in calibration files"
            )

    fibers = parse_fibers(args.fibers)
    if fibers is None:
        fibers = qframe.flux.shape[0]
    else:
        ii = np.arange(qframe.fibers.size)[np.in1d(qframe.fibers, fibers)]
        if ii.size == 0:
            log.error("no such fibers in frame,")
            log.error("fibers are in range [{}:{}]".format(
                qframe.fibers[0], qframe.fibers[-1] + 1))
            sys.exit(12)
        qframe = qframe[ii]

    if args.outframe is not None:
        write_qframe(args.outframe, qframe)
        log.info("wrote {}".format(args.outframe))

    t1 = time.time()
    log.info("all done in {:3.1f} sec".format(t1 - t0))

    if args.plot:
        log.info("plotting {} spectra".format(qframe.wave.shape[0]))

        import matplotlib.pyplot as plt
        fig = plt.figure()
        for i in range(qframe.wave.shape[0]):
            j = (qframe.ivar[i] > 0)
            plt.plot(qframe.wave[i, j], qframe.flux[i, j])
        plt.grid()
        plt.xlabel("wavelength")
        plt.ylabel("flux")
        plt.show()
Ejemplo n.º 7
0
def main(args) :

    global psfs

    log=get_logger()

    log.info("starting")
    
    
    # read preprocessed image
    image=read_image(args.image)
    log.info("read image {}".format(args.image))
    if image.mask is not None :
        image.ivar *= (image.mask==0)

    
    
    xytraceset = read_xytraceset(args.psf)
    wavemin = xytraceset.wavemin
    wavemax = xytraceset.wavemax
    xcoef   = xytraceset.x_vs_wave_traceset._coeff 
    ycoef   = xytraceset.y_vs_wave_traceset._coeff 
    
    nfibers=xcoef.shape[0]
    log.info("read PSF trace with xcoef.shape = {} , ycoef.shape = {} , and wavelength range {}:{}".format(xcoef.shape,ycoef.shape,int(wavemin),int(wavemax)))
    
    lines=None
    if args.lines is not None :
        log.info("We will fit the image using the psf model and lines")
        
        # read lines
        lines=np.loadtxt(args.lines,usecols=[0])
        ok=(lines>wavemin)&(lines<wavemax)
        log.info("read {} lines in {}, with {} of them in traces wavelength range".format(len(lines),args.lines,np.sum(ok)))
        lines=lines[ok]
        

    else :
        log.info("We will do an internal calibration of trace coordinates without using the psf shape in a first step")
        
    
    internal_wavelength_calib    = (not args.continuum)
    external_wavelength_calib   = args.sky | ( args.spectrum is not None )
    
    if args.auto :
        log.debug("read flavor of input image {}".format(args.image))
        hdus = pyfits.open(args.image)
        if "FLAVOR" not in hdus[0].header :
            log.error("no FLAVOR keyword in image header, cannot run with --auto option")
            raise KeyError("no FLAVOR keyword in image header, cannot run with --auto option")
        flavor = hdus[0].header["FLAVOR"].strip().lower()
        hdus.close()
        log.info("Input is a '{}' image".format(flavor))
        if flavor == "flat" : 
            internal_wavelength_calib = False
            external_wavelength_calib = False
        elif flavor == "arc" :
            internal_wavelength_calib = True
            external_wavelength_calib = False
        else :
            internal_wavelength_calib = True
            external_wavelength_calib = True
        log.info("wavelength calib, internal={}, external={}".format(internal_wavelength_calib,external_wavelength_calib))
    
    spectrum_filename = args.spectrum
    if external_wavelength_calib and spectrum_filename is None :
        srch_file = "data/spec-sky.dat"
        if not resource_exists('desispec', srch_file):
            log.error("Cannot find sky spectrum file {:s}".format(srch_file))
            raise RuntimeError("Cannot find sky spectrum file {:s}".format(srch_file))
        else :
            spectrum_filename=resource_filename('desispec', srch_file)
            log.info("Use external calibration from cross-correlation with {}".format(spectrum_filename))
    
    if args.nfibers is not None :
        nfibers = args.nfibers # FOR DEBUGGING

    fibers=np.arange(nfibers)

    if lines is not None :

        # use a forward modeling of the image
        # it's slower and works only for individual lines
        # it's in principle more accurate
        # but gives systematic residuals for complex spectra like the sky
        
        
        psf = read_specter_psf(args.psf)
        
        x,y,dx,ex,dy,ey,fiber_xy,wave_xy=compute_dx_dy_using_psf(psf,image,fibers,lines)
        x_for_dx=x
        y_for_dx=y
        fiber_for_dx=fiber_xy
        wave_for_dx=wave_xy
        x_for_dy=x
        y_for_dy=y
        fiber_for_dy=fiber_xy
        wave_for_dy=wave_xy
        
    else :
        
        # internal calibration method that does not use the psf
        # nor a prior set of lines. this method is much faster
        
        # measure x shifts
        x_for_dx,y_for_dx,dx,ex,fiber_for_dx,wave_for_dx = compute_dx_from_cross_dispersion_profiles(xcoef,ycoef,wavemin,wavemax, image=image, fibers=fibers, width=args.width, deg=args.degxy,image_rebin=args.ccd_rows_rebin)
        if internal_wavelength_calib :
            # measure y shifts
            x_for_dy,y_for_dy,dy,ey,fiber_for_dy,wave_for_dy = compute_dy_using_boxcar_extraction(xytraceset, image=image, fibers=fibers, width=args.width)
            mdy = np.median(dy)
            log.info("Subtract median(dy)={}".format(mdy))
            dy -= mdy # remove median, because this is an internal calibration
            
        else :
            # duplicate dx results with zero shift to avoid write special case code below
            x_for_dy = x_for_dx.copy()
            y_for_dy = y_for_dx.copy()
            dy       = np.zeros(dx.shape)
            ey       = 1.e-6*np.ones(ex.shape)
            fiber_for_dy = fiber_for_dx.copy()
            wave_for_dy  = wave_for_dx.copy()
    
    degxx=args.degxx
    degxy=args.degxy
    degyx=args.degyx
    degyy=args.degyy
    
    while(True) : # loop because polynomial degrees could be reduced
        
        log.info("polynomial fit of measured offsets with degx=(%d,%d) degy=(%d,%d)"%(degxx,degxy,degyx,degyy))
        try :
            dx_coeff,dx_coeff_covariance,dx_errorfloor,dx_mod,dx_mask=polynomial_fit(z=dx,ez=ex,xx=x_for_dx,yy=y_for_dx,degx=degxx,degy=degxy)
            dy_coeff,dy_coeff_covariance,dy_errorfloor,dy_mod,dy_mask=polynomial_fit(z=dy,ez=ey,xx=x_for_dy,yy=y_for_dy,degx=degyx,degy=degyy)
            
            log.info("dx dy error floor = %4.3f %4.3f pixels"%(dx_errorfloor,dy_errorfloor))

            log.info("check fit uncertainties are ok on edge of CCD")
            
            merr=0.
            for fiber in [0,nfibers-1] :
                for rw in [-1,1] :
                    tx = legval(rw,xcoef[fiber])
                    ty = legval(rw,ycoef[fiber])
                    m=monomials(tx,ty,degxx,degxy)
                    tdx=np.inner(dx_coeff,m)
                    tsx=np.sqrt(np.inner(m,dx_coeff_covariance.dot(m)))
                    m=monomials(tx,ty,degyx,degyy)
                    tdy=np.inner(dy_coeff,m)
                    tsy=np.sqrt(np.inner(m,dy_coeff_covariance.dot(m)))
                    merr=max(merr,tsx)
                    merr=max(merr,tsy)
            log.info("max edge shift error = %4.3f pixels"%merr)
            if degxx==0 and degxy==0 and degyx==0 and degyy==0 :
                break
        
        except ( LinAlgError , ValueError ) :
            log.warning("polynomial fit failed with degx=(%d,%d) degy=(%d,%d)"%(degxx,degxy,degyx,degyy))
            if degxx==0 and degxy==0 and degyx==0 and degyy==0 :
                log.error("polynomial degrees are already 0. we can fit the offsets")
                raise RuntimeError("polynomial degrees are already 0. we can fit the offsets")
            merr = 100000. # this will lower the pol. degree.
        
        if merr > args.max_error :
            if merr != 100000. :
                log.warning("max edge shift error = %4.3f pixels is too large, reducing degrees"%merr)
            
            if degxy>0 and degyy>0 and degxy>degxx and degyy>degyx : # first along wavelength
                if degxy>0 : degxy-=1
                if degyy>0 : degyy-=1
            else : # then along fiber
                if degxx>0 : degxx-=1
                if degyx>0 : degyx-=1
        else :
            # error is ok, so we quit the loop
            break
    
    # write this for debugging
    if args.outoffsets :
        file=open(args.outoffsets,"w")
        file.write("# axis wave fiber x y delta error polval (axis 0=y axis1=x)\n")
        for e in range(dy.size) :
            file.write("0 %f %d %f %f %f %f %f\n"%(wave_for_dy[e],fiber_for_dy[e],x_for_dy[e],y_for_dy[e],dy[e],ey[e],dy_mod[e]))
        for e in range(dx.size) :
            file.write("1 %f %d %f %f %f %f %f\n"%(wave_for_dx[e],fiber_for_dx[e],x_for_dx[e],y_for_dx[e],dx[e],ex[e],dx_mod[e]))            
        file.close()
        log.info("wrote offsets in ASCII file %s"%args.outoffsets)

    # print central shift
    mx=np.median(x_for_dx)
    my=np.median(y_for_dx)
    m=monomials(mx,my,degxx,degxy)
    mdx=np.inner(dx_coeff,m)
    mex=np.sqrt(np.inner(m,dx_coeff_covariance.dot(m)))

    mx=np.median(x_for_dy)
    my=np.median(y_for_dy)
    m=monomials(mx,my,degyx,degyy)
    mdy=np.inner(dy_coeff,m)
    mey=np.sqrt(np.inner(m,dy_coeff_covariance.dot(m)))    
    log.info("central shifts dx = %4.3f +- %4.3f dy = %4.3f +- %4.3f "%(mdx,mex,mdy,mey))
        
    # for each fiber, apply offsets and recompute legendre polynomial
    log.info("for each fiber, apply offsets and recompute legendre polynomial")
    
    
    # compute x y to record max deviations
    u  = np.linspace(-1,1,5)
    x0 = np.zeros((xcoef.shape[0],u.size))
    y0 = np.zeros((ycoef.shape[0],u.size))
    for f in range(xcoef.shape[0]) :
        x0[f]=legval(u,xcoef[f])
        y0[f]=legval(u,ycoef[f])
    


    xcoef,ycoef = recompute_legendre_coefficients(xcoef=xcoef,ycoef=ycoef,wavemin=wavemin,wavemax=wavemax,degxx=degxx,degxy=degxy,degyx=degyx,degyy=degyy,dx_coeff=dx_coeff,dy_coeff=dy_coeff)
    
    # use an input spectrum as an external calibration of wavelength
    if spectrum_filename  :
                
        log.info("write and reread PSF to be sure predetermined shifts were propagated")
        write_traces_in_psf(args.psf,args.outpsf,xcoef,ycoef,wavemin,wavemax)
        #psf,xcoef,ycoef,wavemin,wavemax = read_psf_and_traces(args.outpsf)
        
        xytraceset = read_xytraceset(args.outpsf)
        wavemin = xytraceset.wavemin
        wavemax = xytraceset.wavemax
        xcoef   = xytraceset.x_vs_wave_traceset._coeff 
        ycoef   = xytraceset.y_vs_wave_traceset._coeff 
        
        psf = read_specter_psf(args.outpsf)

        ycoef=shift_ycoef_using_external_spectrum(psf=psf,xytraceset=xytraceset,
                                                  image=image,fibers=fibers,spectrum_filename=spectrum_filename,degyy=args.degyy,width=7)
        

        x = np.zeros((xcoef.shape[0],u.size))
        y = np.zeros((ycoef.shape[0],u.size))
        for f in range(xcoef.shape[0]) :
            x[f]=legval(u,xcoef[f])
            y[f]=legval(u,ycoef[f])
        dx = x-x0
        dy = y-y0
        
        header_keywords = {}
        header_keywords["MEANDX"]=np.mean(dx)
        header_keywords["MINDX"]=np.min(dx)
        header_keywords["MAXDX"]=np.max(dx)
        header_keywords["MEANDY"]=np.mean(dy)
        header_keywords["MINDY"]=np.min(dy)
        header_keywords["MAXDY"]=np.max(dy)
        
        write_traces_in_psf(args.psf,args.outpsf,xcoef,ycoef,wavemin,wavemax,header_keywords=header_keywords)
        log.info("wrote modified PSF in %s"%args.outpsf)
        
    else :
        x = np.zeros((xcoef.shape[0],u.size))
        y = np.zeros((ycoef.shape[0],u.size))
        for f in range(xcoef.shape[0]) :
            x[f]=legval(u,xcoef[f])
            y[f]=legval(u,ycoef[f])
        dx = x-x0
        dy = y-y0
        
        header_keywords = {}
        header_keywords["MEANDX"]=np.mean(dx)
        header_keywords["MINDX"]=np.min(dx)
        header_keywords["MAXDX"]=np.max(dx)
        header_keywords["MEANDY"]=np.mean(dy)
        header_keywords["MINDY"]=np.min(dy)
        header_keywords["MAXDY"]=np.max(dy)
        
        write_traces_in_psf(args.psf,args.outpsf,xcoef,ycoef,wavemin,wavemax,header_keywords=header_keywords)
        log.info("wrote modified PSF in %s"%args.outpsf)