Ejemplo n.º 1
0
    def test_errors(self):
        #- Bad shaped input
        data = np.random.uniform(size=(10, 5))
        with self.assertRaises(ValueError):
            R = Resolution(data)

        #- Meaningless type for input
        with self.assertRaises(ValueError):
            R = Resolution('blat')

        #- Non-uniform x spacing
        with self.assertRaises(ValueError):
            R = desispec.resolution._gauss_pix([-1, 0, 2])

        #- missing offsets
        with self.assertRaises(ValueError):
            desispec.resolution._sort_and_symmeterize(data, [-2, -1, 0, 1, 3])

        #- length of offsets too large or small
        with self.assertRaises(ValueError):
            Resolution(data, offsets=[1, 2])

        with self.assertRaises(ValueError):
            Resolution(data,
                       offsets=np.arange(10 *
                                         desispec.resolution.default_ndiag))
Ejemplo n.º 2
0
    def _get_spectra(self):
        #- Setup data for a Resolution matrix
        sigma = 4.0
        ndiag = 21
        xx = np.linspace(-(ndiag - 1) / 2.0, +(ndiag - 1) / 2.0, ndiag)
        Rdata = np.zeros((self.nspec, ndiag, self.nwave))
        for i in range(self.nspec):
            for j in range(self.nwave):
                kernel = np.exp(-xx**2 / (2 * sigma))
                kernel /= sum(kernel)
                Rdata[i, :, j] = kernel

        flux = np.zeros((self.nspec, self.nwave))
        ivar = np.ones((self.nspec, self.nwave))
        mask = np.zeros((self.nspec, self.nwave), dtype=int)
        for i in range(self.nspec):
            R = Resolution(Rdata[i])
            flux[i] = R.dot(self.flux)

        fibermap = desispec.io.empty_fibermap(self.nspec, 1500)
        fibermap['OBJTYPE'][0::2] = 'SKY'

        return Frame(self.wave,
                     flux,
                     ivar,
                     mask,
                     Rdata,
                     spectrograph=2,
                     fibermap=fibermap)
Ejemplo n.º 3
0
    def test_resolution_sparsedia(self):
        data = np.random.uniform(size=(5,10))
        offsets = np.arange(-2,3)

        #- Original case: symetric and odd number of diagonals
        Rdia = scipy.sparse.dia_matrix((data, offsets), shape=(10,10))
        R = Resolution(Rdia)
        self.assertTrue(np.all(R.diagonal() == Rdia.diagonal()))

        #- Non symetric but still odd number of diagonals
        Rdia = scipy.sparse.dia_matrix((data, offsets+1), shape=(10,10))
        R = Resolution(Rdia)
        self.assertTrue(np.all(R.diagonal() == Rdia.diagonal()))

        #- Even number of diagonals
        Rdia = scipy.sparse.dia_matrix((data[1:,:], offsets[1:]), shape=(10,10))
        R = Resolution(Rdia)
        self.assertTrue(np.all(R.diagonal() == Rdia.diagonal()))

        #- Unordered diagonals
        data = np.random.uniform(size=(5,10))
        offsets = [0,1,-1,2,-2]

        Rdia = scipy.sparse.dia_matrix((data, offsets), shape=(10,10))
        R1 = Resolution(Rdia)
        R2 = Resolution(data, offsets)
        self.assertTrue(np.all(R1.diagonal() == Rdia.diagonal()))
        self.assertTrue(np.all(R2.diagonal() == Rdia.diagonal()))
        self.assertTrue(np.all(R1.data == R2.data))
Ejemplo n.º 4
0
    def test_resolution_dense(self):
        #- dense with no offsets specified
        data = np.random.uniform(size=(10,10))
        R = Resolution(data)
        Rdense = R.todense()
        self.assertTrue(np.all(Rdense == data))        

        #- with offsets
        offsets = np.arange(-2,4)
        R = Resolution(data, offsets)
        Rdense = R.todense()
        for i in offsets:
            self.assertTrue(np.all(Rdense.diagonal(i) == data.diagonal(i)), \
                "diagonal {} doesn't match".format(i))

        #- dense without offsets but larger than default_ndiag
        ndiag = desispec.resolution.default_ndiag + 5
        data = np.random.uniform(size=(ndiag, ndiag))
        Rdense = Resolution(data).todense()

        for i in range(ndiag):
            if i <= desispec.resolution.default_ndiag//2:
                self.assertTrue(np.all(Rdense.diagonal(i) == data.diagonal(i)), \
                    "diagonal {} doesn't match".format(i))
                self.assertTrue(np.all(Rdense.diagonal(-i) == data.diagonal(-i)), \
                    "diagonal {} doesn't match".format(-i))
            else:
                self.assertTrue(np.all(Rdense.diagonal(i) == 0.0), \
                    "diagonal {} not 0s".format(i))
                self.assertTrue(np.all(Rdense.diagonal(-i) == 0.0), \
                    "diagonal {} not 0s".format(-i))
Ejemplo n.º 5
0
    def _get_spectra(self, with_gradient=False):
        #- Setup data for a Resolution matrix
        sigma2 = 4.0
        ndiag = 21
        xx = np.linspace(-(ndiag - 1) / 2.0, +(ndiag - 1) / 2.0, ndiag)
        Rdata = np.zeros((self.nspec, ndiag, self.nwave))
        for i in range(self.nspec):
            kernel = np.exp(-(xx + float(i) / self.nspec * 0.3)**2 /
                            (2 * sigma2))
            #kernel = np.exp(-xx**2/(2*sigma2))
            kernel /= sum(kernel)
            for j in range(self.nwave):
                Rdata[i, :, j] = kernel

        flux = np.zeros((self.nspec, self.nwave), dtype=float)
        ivar = np.ones((self.nspec, self.nwave), dtype=float)
        # Add a random component
        for i in range(self.nspec):
            ivar[i] += 0.4 * np.random.uniform(size=self.nwave)

        mask = np.zeros((self.nspec, self.nwave), dtype=int)

        fibermap = empty_fibermap(self.nspec, 1500)
        fibermap['OBJTYPE'][0::2] = 'SKY'

        x = fibermap["FIBERASSIGN_X"]
        y = fibermap["FIBERASSIGN_Y"]
        x = x - np.mean(x)
        y = y - np.mean(y)
        if np.std(x) > 0: x /= np.std(x)
        if np.std(y) > 0: y /= np.std(y)
        w = (self.wave - self.wave[0]) / (self.wave[-1] -
                                          self.wave[0]) * 2. - 1
        for i in range(self.nspec):
            R = Resolution(Rdata[i])

            if with_gradient:
                scale = 1. + (0.1 * x[i] + 0.2 * y[i]) * (1 + 0.4 * w)
                flux[i] = R.dot(scale * self.flux)
            else:
                flux[i] = R.dot(self.flux)
        meta = {"camera": "r2"}
        return Frame(self.wave,
                     flux,
                     ivar,
                     mask,
                     Rdata,
                     spectrograph=2,
                     fibermap=fibermap,
                     meta=meta)
    def _X2(x):
        z = x[0]
        v = x[1]
        lnA = x[2]

        line_flux = np.exp(lnA)

        result = 0.0

        for cam in cams:
            wave = spectra.wave[cam]
            res = Resolution(spectra.resolution_data[cam][fiber, :])
            flux = spectra.flux[cam][fiber, :]
            ivar = spectra.ivar[cam][fiber, :]
            mask = spectra.mask[cam][fiber, :]

            tw = twave(wave.min(), wave.max())

            _, _, X2, _ = doublet_chi2(z,
                                       tw,
                                       wave,
                                       res,
                                       flux,
                                       ivar,
                                       mask,
                                       continuum=0.0,
                                       sigmav=v,
                                       r=0.0,
                                       line_flux=line_flux,
                                       linea=0.0,
                                       lineb=lineb)

            result += X2

        return result
Ejemplo n.º 7
0
def get_frame_data(nspec=10, objtype=None):
    """
    Return basic test data for desispec.frame object:
    """
    nwave = 100

    wavemin, wavemax = 4000, 4100
    wave, model_flux = get_models(nspec,
                                  nwave,
                                  wavemin=wavemin,
                                  wavemax=wavemax)
    resol_data = set_resolmatrix(nspec, nwave)

    calib = np.sin((wave - wavemin) * np.pi / np.max(wave))
    flux = np.zeros((nspec, nwave))
    for i in range(nspec):
        flux[i] = Resolution(resol_data[i]).dot(model_flux[i] * calib)

    sigma = 0.01
    # flux += np.random.normal(scale=sigma, size=flux.shape)

    ivar = np.ones(flux.shape) / sigma**2
    mask = np.zeros(flux.shape, dtype=int)
    fibermap = empty_fibermap(nspec, 1500)
    if objtype is None:
        fibermap['OBJTYPE'] = 'QSO'
        fibermap['OBJTYPE'][0:3] = 'STD'  # For flux tests
    else:
        fibermap['OBJTYPE'] = objtype

    frame = Frame(wave, flux, ivar, mask, resol_data, fibermap=fibermap)
    frame.meta = {}
    frame.meta['EXPTIME'] = 1.  # For flux tests
    return frame
Ejemplo n.º 8
0
class TestResolution(unittest.TestCase):

    #- TODO: in principle these should be converted to self.assertXYZ
    #- In practice, if they fail then the test won't pass so the end result is the same
    def test_resolution(self, n=100):
        dense = np.arange(n * n).reshape(n, n)
        R1 = Resolution(dense)
        assert scipy.sparse.isspmatrix_dia(
            R1), 'Resolution is not recognized as a scipy.sparse.dia_matrix.'
        assert len(
            R1.offsets
        ) == desispec.resolution.default_ndiag, 'Resolution.offsets has wrong size'

        R2 = Resolution(R1)
        assert np.array_equal(
            R1.toarray(),
            R2.toarray()), 'Constructor broken for dia_matrix input.'

        R3 = Resolution(R1.data)
        assert np.array_equal(
            R1.toarray(),
            R3.toarray()), 'Constructor broken for array data input.'

        sparse = scipy.sparse.dia_matrix((R1.data[::-1], R1.offsets[::-1]),
                                         (n, n))
        R4 = Resolution(sparse)
        assert np.array_equal(
            R1.toarray(),
            R4.toarray()), 'Constructor broken for permuted offsets input.'

        R5 = Resolution(R1.to_fits_array())
        assert np.array_equal(R1.toarray(),
                              R5.toarray()), 'to_fits_array() is broken.'

        #- test different sizes of input diagonals
        for ndiag in [3, 5, 11]:
            R6 = Resolution(np.ones((ndiag, n)))
            assert len(
                R6.offsets) == ndiag, 'Constructor broken for ndiag={}'.format(
                    ndiag)

        #- An even number if diagonals is not allowed
        try:
            ndiag = 10
            R7 = Resolution(np.ones((ndiag, n)))
            raise RuntimeError(
                'Incorrectly created Resolution with even number of diagonals')
        except ValueError, err:
            #- it correctly raised an error, so pass
            pass

        #- Test creation with asymetric diagonals (should fail)
        R1.offsets += 1
        try:
            R8 = Resolution(R1)
            raise RuntimeError(
                'Incorrectly created Resolution with non-symmetric input')
        except ValueError:
            #- correctly raised an error, so pass
            pass
Ejemplo n.º 9
0
    def test_resolution(self):
        """
        Test that identical spectra convolved with different resolutions
        results in identical fiberflats
        """
        wave, flux, ivar, mask = _get_data()
        nspec, nwave = flux.shape

        #- Setup a Resolution matrix that varies with fiber and wavelength
        #- Note: this is actually the transpose of the resolution matrix
        #- I wish I was creating, but as long as we self-consistently
        #- use it for convolving and solving, that shouldn't matter.
        sigma = np.linspace(2, 10, nwave * nspec)
        ndiag = 21
        xx = np.linspace(-ndiag / 2.0, +ndiag / 2.0, ndiag)
        Rdata = np.zeros((nspec, len(xx), nwave))
        for i in range(nspec):
            for j in range(nwave):
                kernel = np.exp(-xx**2 / (2 * sigma[i * nwave + j]**2))
                kernel /= sum(kernel)
                Rdata[i, :, j] = kernel

        #- Convolve the data with the resolution matrix
        convflux = np.empty_like(flux)
        for i in range(nspec):
            convflux[i] = Resolution(Rdata[i]).dot(flux[i])

        #- Run the code
        frame = Frame(wave, convflux, ivar, mask, Rdata, spectrograph=0)
        ff = compute_fiberflat(frame)

        #- These fiber flats should all be ~1
        self.assertTrue(np.all(np.abs(ff.fiberflat - 1) < 0.001))
Ejemplo n.º 10
0
    def _fdgrad(x):
        z = x[0]
        v = x[1]
        r = x[2]
        lnA = x[3]

        line_flux = np.exp(lnA)

        result = 0.0

        chisq = 0.0
        grad = np.zeros(4)

        eps = np.sqrt(np.finfo(float).eps)

        for cam in cams:
            wave = postage[cam].wave
            res = Resolution(postage[cam].R)
            flux = postage[cam].flux
            ivar = postage[cam].ivar
            mask = postage[cam].mask

            for i in np.arange(4):
                hi = np.array(x, copy=True)
                lo = np.array(x, copy=True)

                lo[i] -= eps
                hi[i] += eps

                _, _, hiX2, _ = doublet_chi2(hi[0],
                                             wave,
                                             res,
                                             flux,
                                             ivar,
                                             mask,
                                             continuum=0.0,
                                             sigmav=hi[1],
                                             r=hi[2],
                                             line_flux=np.exp(hi[3]),
                                             linea=linea,
                                             lineb=lineb)
                _, _, loX2, _ = doublet_chi2(lo[0],
                                             wave,
                                             res,
                                             flux,
                                             ivar,
                                             mask,
                                             continuum=0.0,
                                             sigmav=lo[1],
                                             r=lo[2],
                                             line_flux=np.exp(lo[3]),
                                             linea=linea,
                                             lineb=lineb)

                grad[i] += (hiX2 - loX2) / 2. / eps

            break

        return grad, -99.
Ejemplo n.º 11
0
def get_resolution(wave, nspec, psf, usesigma=False):
    """
    Calculates approximate resolution values at given wavelengths in the format that can directly
    feed resolution data of desispec.frame.Frame object. 

    wave: wavelength array
    nsepc: no of spectra (int)
    psf: desispec.psf.PSF like object
    usesigma: allows to use sigma from psf file for resolution computation. 
    If psf file is psfboot, uses per fiber xsigma. 
    If psf file is from QL arcs processing, uses wsigma 

    returns : resolution data (nspec,nband,nwave); nband = 1 for usesigma = False, otherwise nband=21
    """
    from desispec.resolution import Resolution

    nwave = len(wave)
    if usesigma:
        nband = 21
    else:
        nband = 1  # only for dimensionality purpose of data model.
    resolution_data = np.zeros((nspec, nband, nwave))

    if usesigma:  #- use sigmas for resolution based on psffile type

        if hasattr(psf, 'wcoeff'):  #- use if have wsigmas
            log.info("Getting resolution from wsigmas from arc lines PSF")
            for ispec in range(nspec):
                thissigma = psf.wdisp(ispec, wave) / psf.angstroms_per_pixel(
                    ispec, wave)  #- in pixel units
                Rsig = Resolution(thissigma)
                resolution_data[ispec] = Rsig.data
        else:

            if hasattr(
                    psf,
                    'xsigma_boot'):  #- only use if xsigma comes from psfboot
                log.info(
                    "Getting resolution matrix band diagonal elements from constant Gaussing Xsigma"
                )
                for ispec in range(nspec):
                    thissigma = psf.xsigma(ispec, wave)
                    Rsig = Resolution(thissigma)
                    resolution_data[ispec] = Rsig.data

    return resolution_data
Ejemplo n.º 12
0
 def _get_spectra(self,with_gradient=False):
     #- Setup data for a Resolution matrix
     sigma2 = 4.0
     ndiag = 21
     xx = np.linspace(-(ndiag-1)/2.0, +(ndiag-1)/2.0, ndiag)
     Rdata = np.zeros( (self.nspec, ndiag, self.nwave) )
     for i in range(self.nspec):
         kernel = np.exp(-(xx+float(i)/self.nspec*0.3)**2/(2*sigma2))
         #kernel = np.exp(-xx**2/(2*sigma2))
         kernel /= sum(kernel)
         for j in range(self.nwave):                
             Rdata[i,:,j] = kernel
     
     flux = np.zeros((self.nspec, self.nwave),dtype=float)
     ivar = np.ones((self.nspec, self.nwave),dtype=float)
     # Add a random component
     for i in range(self.nspec) :
         ivar[i] += 0.4*np.random.uniform(size=self.nwave)
     
     mask = np.zeros((self.nspec, self.nwave), dtype=int)
     
     fibermap = desispec.io.empty_fibermap(self.nspec, 1500)
     fibermap['OBJTYPE'][0::2] = 'SKY'
     
     x=fibermap["DESIGN_X"]
     y=fibermap["DESIGN_Y"]
     x = x-np.mean(x)
     y = y-np.mean(y)
     if np.std(x)>0 : x /= np.std(x)
     if np.std(y)>0 : y /= np.std(y)
     w = (self.wave-self.wave[0])/(self.wave[-1]-self.wave[0])*2.-1
     for i in range(self.nspec):
         R = Resolution(Rdata[i])
             
         if with_gradient :
             scale = 1.+(0.1*x[i]+0.2*y[i])*(1+0.4*w)
             flux[i] = R.dot(scale*self.flux)
         else :
             flux[i] = R.dot(self.flux)
     
     return Frame(self.wave, flux, ivar, mask, Rdata, spectrograph=2, fibermap=fibermap)
Ejemplo n.º 13
0
    def test_throughput_resolution(self):
        """
        Test that spectra with different throughputs and different resolutions
        result in fiberflat variations that are only due to throughput.
        """
        wave, flux, ivar, mask = _get_data()
        nspec, nwave = flux.shape

        #- Setup a Resolution matrix that varies with fiber and wavelength
        #- Note: this is actually the transpose of the resolution matrix
        #- I wish I was creating, but as long as we self-consistently
        #- use it for convolving and solving, that shouldn't matter.
        sigma = np.linspace(2, 10, nwave * nspec)
        ndiag = 21
        xx = np.linspace(-ndiag / 2.0, +ndiag / 2.0, ndiag)
        Rdata = np.zeros((nspec, len(xx), nwave))
        for i in range(nspec):
            for j in range(nwave):
                kernel = np.exp(-xx**2 / (2 * sigma[i * nwave + j]**2))
                kernel /= sum(kernel)
                Rdata[i, :, j] = kernel

        #- Vary the input flux prior to calculating the fiber flat
        flux[1] *= 1.1
        flux[2] *= 1.2
        flux[3] /= 1.1
        flux[4] /= 1.2

        #- Convolve the data with the varying resolution matrix
        convflux = np.empty_like(flux)
        for i in range(nspec):
            convflux[i] = Resolution(Rdata[i]).dot(flux[i])

        #- Run the code
        frame = Frame(wave, convflux, ivar, mask, Rdata, spectrograph=0)
        #- Set an accuracy for this
        accuracy = 1.e-9
        ff = compute_fiberflat(frame, accuracy=accuracy)

        #- Compare variation with middle fiber
        mid = ff.fiberflat.shape[0] // 2

        diff = (ff.fiberflat[1] / 1.1 - ff.fiberflat[mid])
        self.assertLess(np.max(np.abs(diff)), accuracy)

        diff = (ff.fiberflat[2] / 1.2 - ff.fiberflat[mid])
        self.assertLess(np.max(np.abs(diff)), accuracy)

        diff = (ff.fiberflat[3] * 1.1 - ff.fiberflat[mid])
        self.assertLess(np.max(np.abs(diff)), accuracy)

        diff = (ff.fiberflat[4] * 1.2 - ff.fiberflat[mid])
        self.assertLess(np.max(np.abs(diff)), accuracy)
Ejemplo n.º 14
0
 def _getdata(self, n=10):
     wave = np.linspace(5000, 5100, n)
     flux = np.random.uniform(0, 1, size=n)
     ivar = np.random.uniform(0, 1, size=n)
     ### mask = np.random.randint(0, 256, size=n)
     rdat = np.ones((3, n))
     rdat[0] *= 0.25
     rdat[1] *= 0.5
     rdat[2] *= 0.25
     R = Resolution(rdat)
     ### return wave, flux, ivar, mask, R
     return wave, flux, ivar, None, R
    def _res(x):
        z = x[0]
        v = x[1]
        lnA = x[2]

        line_flux = np.exp(lnA)

        residuals = []

        for cam in cams:
            wave = spectra.wave[cam]
            res = Resolution(spectra.resolution_data[cam][fiber, :])
            flux = spectra.flux[cam][fiber, :]
            ivar = spectra.ivar[cam][fiber, :]
            mask = spectra.mask[cam][fiber, :]

            tw = twave(wave.min(), wave.max())

            rflux = doublet_obs(z,
                                tw,
                                wave,
                                res,
                                continuum=0.0,
                                sigmav=v,
                                r=0.0,
                                linea=0.0,
                                lineb=lineb)
            rflux *= line_flux

            res = np.sqrt(ivar[mask]) * np.abs(flux[mask] - rflux[mask])

            residuals += res.tolist()

        residuals = np.array(residuals)

        print(z, v, lnA, residuals.sum())

        return residuals
Ejemplo n.º 16
0
    def _get_spectra(self):
        #- Setup data for a Resolution matrix
        sigma = 4.0
        ndiag = 21
        xx = np.linspace(-(ndiag-1)/2.0, +(ndiag-1)/2.0, ndiag)
        Rdata = np.zeros( (self.nspec, ndiag, self.nwave) )
        for i in range(self.nspec):
            for j in range(self.nwave):
                kernel = np.exp(-xx**2/(2*sigma))
                kernel /= sum(kernel)
                Rdata[i,:,j] = kernel
                
        flux = np.zeros((self.nspec, self.nwave))
        ivar = np.ones((self.nspec, self.nwave))
        mask = np.zeros((self.nspec, self.nwave), dtype=int)
        for i in range(self.nspec):
            R = Resolution(Rdata[i])
            flux[i] = R.dot(self.flux)

        fibermap = desispec.io.empty_fibermap(self.nspec)
        fibermap['OBJTYPE'][0::2] = 'SKY'

        return Frame(self.wave, flux, ivar, mask, Rdata), fibermap
Ejemplo n.º 17
0
    def test_main(self):
        """
        Test the main program.
        """
        # generate the frame data
        wave, flux, ivar, mask = _get_data()
        nspec, nwave = flux.shape

        #- Setup data for a Resolution matrix
        sigma = 4.0
        ndiag = 11
        xx = np.linspace(-(ndiag - 1) / 2.0, +(ndiag - 1) / 2.0, ndiag)
        Rdata = np.zeros((nspec, ndiag, nwave))
        kernel = np.exp(-xx**2 / (2 * sigma))
        kernel /= sum(kernel)
        for i in range(nspec):
            for j in range(nwave):
                Rdata[i, :, j] = kernel

        #- Convolve the data with the resolution matrix
        convflux = np.empty_like(flux)
        for i in range(nspec):
            convflux[i] = Resolution(Rdata[i]).dot(flux[i])

        # create a fake fibermap
        fibermap = io.empty_fibermap(nspec, nwave)
        for i in range(0, nspec):
            fibermap['OBJTYPE'][i] = 'FAKE'
        io.write_fibermap(self.testfibermap, fibermap)

        #- write out the frame
        frame = Frame(wave,
                      convflux,
                      ivar,
                      mask,
                      Rdata,
                      spectrograph=0,
                      fibermap=fibermap,
                      meta=dict(FLAVOR='flat'))
        write_frame(self.testframe, frame, fibermap=fibermap)

        # set program arguments
        argstr = ['--infile', self.testframe, '--outfile', self.testflat]

        # run it
        args = ffscript.parse(options=argstr)
        ffscript.main(args)
Ejemplo n.º 18
0
def get_frame_data(nspec=10, wavemin=4000, wavemax=4100, nwave=100, meta={}):
    """
    Return basic test data for desispec.frame object:
    """
    wave, model_flux = get_models(nspec,
                                  nwave,
                                  wavemin=wavemin,
                                  wavemax=wavemax)
    resol_data = set_resolmatrix(nspec, nwave)

    calib = np.sin((wave - wavemin) * np.pi / np.max(wave))
    flux = np.zeros((nspec, nwave))
    for i in range(nspec):
        flux[i] = Resolution(resol_data[i]).dot(model_flux[i] * calib)

    sigma = 0.01
    # flux += np.random.normal(scale=sigma, size=flux.shape)

    ivar = np.ones(flux.shape) / sigma**2
    mask = np.zeros(flux.shape, dtype=int)
    fibermap = empty_fibermap(nspec, 1500)
    fibermap['OBJTYPE'] = 'TGT'
    fibermap['DESI_TARGET'] = desi_mask.QSO
    fibermap['DESI_TARGET'][0:3] = desi_mask.STD_FAINT  # For flux tests
    fibermap['FIBER_X'] = np.arange(nspec) * 400. / nspec  #mm
    fibermap['FIBER_Y'] = np.arange(nspec) * 400. / nspec  #mm
    fibermap['DELTA_X'] = 0.005 * np.ones(nspec)  #mm
    fibermap['DELTA_Y'] = 0.003 * np.ones(nspec)  #mm

    if "EXPTIME" not in meta.keys():
        meta['EXPTIME'] = 1.0

    frame = Frame(wave,
                  flux,
                  ivar,
                  mask,
                  resol_data,
                  fibermap=fibermap,
                  meta=meta)
    return frame
Ejemplo n.º 19
0
    def _agrad(x):
        z = x[0]
        v = x[1]
        r = x[2]
        lnA = x[3]

        line_flux = np.exp(lnA)

        result = 0.0

        chisq = 0.0
        grad = np.zeros(4)

        for cam in cams:
            wave = postage[cam].wave
            res = Resolution(postage[cam].R)
            flux = postage[cam].flux
            ivar = postage[cam].ivar
            mask = postage[cam].mask

            _grad, X2 = doublet_chi2_grad(z,
                                          wave,
                                          res,
                                          flux,
                                          ivar,
                                          mask,
                                          continuum=0.0,
                                          v=v,
                                          r=r,
                                          line_flux=line_flux,
                                          linea=linea,
                                          lineb=lineb)

            grad += _grad
            chisq += X2

            break

        return grad, chisq
Ejemplo n.º 20
0
    def test_throughput(self):
        """
        Test that spectra with different throughputs but the same resolution
        produce a fiberflat mirroring the variations in throughput
        """
        wave, flux, ivar, mask = _get_data()
        nspec, nwave = flux.shape

        #- Setup data for a Resolution matrix
        sigma = 4.0
        ndiag = 21
        xx = np.linspace(-(ndiag - 1) / 2.0, +(ndiag - 1) / 2.0, ndiag)
        Rdata = np.zeros((nspec, ndiag, nwave))
        kernel = np.exp(-xx**2 / (2 * sigma))
        kernel /= sum(kernel)
        for i in range(nspec):
            for j in range(nwave):
                Rdata[i, :, j] = kernel

        #- Vary the input flux prior to calculating the fiber flat
        flux[1] *= 1.1
        flux[2] *= 1.2
        flux[3] *= 0.8

        #- Convolve with the (common) resolution matrix
        convflux = np.empty_like(flux)
        for i in range(nspec):
            convflux[i] = Resolution(Rdata[i]).dot(flux[i])

        frame = Frame(wave, convflux, ivar, mask, Rdata, spectrograph=0)
        ff = compute_fiberflat(frame)

        #- flux[1] is brighter, so should fiberflat[1].  etc.
        self.assertTrue(np.allclose(ff.fiberflat[0], ff.fiberflat[1] / 1.1))
        self.assertTrue(np.allclose(ff.fiberflat[0], ff.fiberflat[2] / 1.2))
        self.assertTrue(np.allclose(ff.fiberflat[0], ff.fiberflat[3] / 0.8))
Ejemplo n.º 21
0
def spectroperf_resample_spectrum_singleproc(spectra, target_index, wave,
                                             wavebin, resampling_matrix, ndiag,
                                             flux, ivar, rdata):
    cinv = None
    for b in spectra._bands:
        twave = spectra.wave[b]
        jj = (twave >= wave[0]) & (twave <= wave[-1])
        twave = twave[jj]
        tivar = spectra.ivar[b][target_index][jj]
        diag_ivar = scipy.sparse.dia_matrix((tivar, [0]),
                                            (twave.size, twave.size))
        RR = Resolution(spectra.resolution_data[b][target_index][:, jj]).dot(
            resampling_matrix[b])
        tcinv = RR.T.dot(diag_ivar.dot(RR))
        tcinvf = RR.T.dot(tivar * spectra.flux[b][target_index][jj])
        if cinv is None:
            cinv = tcinv
            cinvf = tcinvf
        else:
            cinv += tcinv
            cinvf += tcinvf
    cinv = cinv.todense()
    decorrelate_divide_and_conquer(cinv, cinvf, wavebin, flux[target_index],
                                   ivar[target_index], rdata[target_index])
Ejemplo n.º 22
0
    def _X2(x):
        z = x[0]
        v = x[1]
        r = x[2]
        lnA = x[3]

        line_flux = np.exp(lnA)

        result = 0.0

        for cam in cams:
            wave = postage[cam].wave
            res = Resolution(postage[cam].R)
            flux = postage[cam].flux
            ivar = postage[cam].ivar
            mask = postage[cam].mask

            _, _, X2, _ = doublet_chi2(z,
                                       wave,
                                       res,
                                       flux,
                                       ivar,
                                       mask,
                                       continuum=0.0,
                                       sigmav=v,
                                       r=r,
                                       line_flux=line_flux,
                                       linea=linea,
                                       lineb=lineb)
            # X2   = doublet(z, twave, sigmav=v, r=r, linea=linea, lineb=lineb, index=5514)

            result += X2

            break

        return result
Ejemplo n.º 23
0
def compute_uniform_sky(frame,
                        nsig_clipping=4.,
                        max_iterations=100,
                        model_ivar=False,
                        add_variance=True):
    """Compute a sky model.
    
    Sky[fiber,i] = R[fiber,i,j] Flux[j]
    
    Input flux are expected to be flatfielded!
    We don't check this in this routine.

    Args:
        frame : Frame object, which includes attributes
          - wave : 1D wavelength grid in Angstroms
          - flux : 2D flux[nspec, nwave] density
          - ivar : 2D inverse variance of flux
          - mask : 2D inverse mask flux (0=good)
          - resolution_data : 3D[nspec, ndiag, nwave]  (only sky fibers)
        nsig_clipping : [optional] sigma clipping value for outlier rejection

    Optional:
        max_iterations : int , number of iterations
        model_ivar : replace ivar by a model to avoid bias due to correlated flux and ivar. this has a negligible effect on sims.
        add_variance : evaluate calibration error and add this to the sky model variance
        
    returns SkyModel object with attributes wave, flux, ivar, mask
    """

    log = get_logger()
    log.info("starting")

    # Grab sky fibers on this frame
    skyfibers = np.where(frame.fibermap['OBJTYPE'] == 'SKY')[0]
    assert np.max(skyfibers) < 500  #- indices, not fiber numbers

    nwave = frame.nwave
    nfibers = len(skyfibers)

    current_ivar = frame.ivar[skyfibers].copy() * (frame.mask[skyfibers] == 0)
    flux = frame.flux[skyfibers]
    Rsky = frame.R[skyfibers]

    input_ivar = None
    if model_ivar:
        log.info(
            "use a model of the inverse variance to remove bias due to correlated ivar and flux"
        )
        input_ivar = current_ivar.copy()
        median_ivar_vs_wave = np.median(current_ivar, axis=0)
        median_ivar_vs_fiber = np.median(current_ivar, axis=1)
        median_median_ivar = np.median(median_ivar_vs_fiber)
        for f in range(current_ivar.shape[0]):
            threshold = 0.01
            current_ivar[f] = median_ivar_vs_fiber[
                f] / median_median_ivar * median_ivar_vs_wave
            # keep input ivar for very low weights
            ii = (input_ivar[f] <= (threshold * median_ivar_vs_wave))
            #log.info("fiber {} keep {}/{} original ivars".format(f,np.sum(ii),current_ivar.shape[1]))
            current_ivar[f][ii] = input_ivar[f][ii]

    sqrtw = np.sqrt(current_ivar)
    sqrtwflux = sqrtw * flux

    chi2 = np.zeros(flux.shape)

    nout_tot = 0
    for iteration in range(max_iterations):

        # the matrix A is 1/2 of the second derivative of the chi2 with respect to the parameters
        # A_ij = 1/2 d2(chi2)/di/dj
        # A_ij = sum_fiber sum_wave_w ivar[fiber,w] d(model)/di[fiber,w] * d(model)/dj[fiber,w]

        # the vector B is 1/2 of the first derivative of the chi2 with respect to the parameters
        # B_i  = 1/2 d(chi2)/di
        # B_i  = sum_fiber sum_wave_w ivar[fiber,w] d(model)/di[fiber,w] * (flux[fiber,w]-model[fiber,w])

        # the model is model[fiber]=R[fiber]*sky
        # and the parameters are the unconvolved sky flux at the wavelength i

        # so, d(model)/di[fiber,w] = R[fiber][w,i]
        # this gives
        # A_ij = sum_fiber  sum_wave_w ivar[fiber,w] R[fiber][w,i] R[fiber][w,j]
        # A = sum_fiber ( diag(sqrt(ivar))*R[fiber] ) ( diag(sqrt(ivar))* R[fiber] )^t
        # A = sum_fiber sqrtwR[fiber] sqrtwR[fiber]^t
        # and
        # B = sum_fiber sum_wave_w ivar[fiber,w] R[fiber][w] * flux[fiber,w]
        # B = sum_fiber sum_wave_w sqrt(ivar)[fiber,w]*flux[fiber,w] sqrtwR[fiber,wave]

        #A=scipy.sparse.lil_matrix((nwave,nwave)).tocsr()
        A = np.zeros((nwave, nwave))
        B = np.zeros((nwave))

        # diagonal sparse matrix with content = sqrt(ivar)*flat of a given fiber
        SD = scipy.sparse.lil_matrix((nwave, nwave))

        # loop on fiber to handle resolution
        for fiber in range(nfibers):
            if fiber % 10 == 0:
                log.info("iter %d sky fiber %d/%d" %
                         (iteration, fiber, nfibers))
            R = Rsky[fiber]

            # diagonal sparse matrix with content = sqrt(ivar)
            SD.setdiag(sqrtw[fiber])

            sqrtwR = SD * R  # each row r of R is multiplied by sqrtw[r]
            A += (sqrtwR.T * sqrtwR).todense()
            B += sqrtwR.T * sqrtwflux[fiber]

        log.info("iter %d solving" % iteration)
        w = A.diagonal() > 0
        A_pos_def = A[w, :]
        A_pos_def = A_pos_def[:, w]
        parameters = B * 0
        try:
            parameters[w] = cholesky_solve(A_pos_def, B[w])
        except:
            log.info("cholesky failed, trying svd in iteration {}".format(
                iteration))
            parameters[w] = np.linalg.lstsq(A_pos_def, B[w])[0]

        log.info("iter %d compute chi2" % iteration)

        for fiber in range(nfibers):
            # the parameters are directly the unconvolve sky flux
            # so we simply have to reconvolve it
            fiber_convolved_sky_flux = Rsky[fiber].dot(parameters)
            chi2[fiber] = current_ivar[fiber] * (flux[fiber] -
                                                 fiber_convolved_sky_flux)**2

        log.info("rejecting")

        nout_iter = 0
        if iteration < 1:
            # only remove worst outlier per wave
            # apply rejection iteratively, only one entry per wave among fibers
            # find waves with outlier (fastest way)
            nout_per_wave = np.sum(chi2 > nsig_clipping**2, axis=0)
            selection = np.where(nout_per_wave > 0)[0]
            for i in selection:
                worst_entry = np.argmax(chi2[:, i])
                current_ivar[worst_entry, i] = 0
                sqrtw[worst_entry, i] = 0
                sqrtwflux[worst_entry, i] = 0
                nout_iter += 1

        else:
            # remove all of them at once
            bad = (chi2 > nsig_clipping**2)
            current_ivar *= (bad == 0)
            sqrtw *= (bad == 0)
            sqrtwflux *= (bad == 0)
            nout_iter += np.sum(bad)

        nout_tot += nout_iter

        sum_chi2 = float(np.sum(chi2))
        ndf = int(np.sum(chi2 > 0) - nwave)
        chi2pdf = 0.
        if ndf > 0:
            chi2pdf = sum_chi2 / ndf
        log.info("iter #%d chi2=%f ndf=%d chi2pdf=%f nout=%d" %
                 (iteration, sum_chi2, ndf, chi2pdf, nout_iter))

        if nout_iter == 0:
            break

    log.info("nout tot=%d" % nout_tot)

    # we know have to compute the sky model for all fibers
    # and propagate the uncertainties

    # no need to restore the original ivar to compute the model errors when modeling ivar
    # the sky inverse variances are very similar

    log.info("compute the parameter covariance")
    # we may have to use a different method to compute this
    # covariance

    try:
        parameter_covar = cholesky_invert(A)
        # the above is too slow
        # maybe invert per block, sandwich by R
    except np.linalg.linalg.LinAlgError:
        log.warning(
            "cholesky_solve_and_invert failed, switching to np.linalg.lstsq and np.linalg.pinv"
        )
        parameter_covar = np.linalg.pinv(A)

    log.info("compute mean resolution")
    # we make an approximation for the variance to save CPU time
    # we use the average resolution of all fibers in the frame:
    mean_res_data = np.mean(frame.resolution_data, axis=0)
    Rmean = Resolution(mean_res_data)

    log.info("compute convolved sky and ivar")

    # The parameters are directly the unconvolved sky
    # First convolve with average resolution :
    convolved_sky_covar = Rmean.dot(parameter_covar).dot(Rmean.T.todense())

    # and keep only the diagonal
    convolved_sky_var = np.diagonal(convolved_sky_covar)

    # inverse
    convolved_sky_ivar = (convolved_sky_var > 0) / (convolved_sky_var +
                                                    (convolved_sky_var == 0))

    # and simply consider it's the same for all spectra
    cskyivar = np.tile(convolved_sky_ivar,
                       frame.nspec).reshape(frame.nspec, nwave)

    # The sky model for each fiber (simple convolution with resolution of each fiber)
    cskyflux = np.zeros(frame.flux.shape)
    for i in range(frame.nspec):
        cskyflux[i] = frame.R[i].dot(parameters)

    # look at chi2 per wavelength and increase sky variance to reach chi2/ndf=1
    if skyfibers.size > 1 and add_variance:
        modified_cskyivar = _model_variance(frame, cskyflux, cskyivar,
                                            skyfibers)
    else:
        modified_cskyivar = cskyivar.copy()

    # need to do better here
    mask = (cskyivar == 0).astype(np.uint32)

    return SkyModel(
        frame.wave.copy(),
        cskyflux,
        modified_cskyivar,
        mask,
        nrej=nout_tot,
        stat_ivar=cskyivar)  # keep a record of the statistical ivar for QA
Ejemplo n.º 24
0
    def __init__(self,
                 wave,
                 flux,
                 ivar,
                 mask=None,
                 resolution_data=None,
                 fibers=None,
                 spectrograph=None,
                 meta=None,
                 fibermap=None,
                 chi2pix=None,
                 scores=None,
                 scores_comments=None,
                 wsigma=None,
                 ndiag=21,
                 suppress_res_warning=False):
        """
        Lightweight wrapper for multiple spectra on a common wavelength grid

        x.wave, x.flux, x.ivar, x.mask, x.resolution_data, x.header, sp.R

        Args:
            wave: 1D[nwave] wavelength in Angstroms
            flux: 2D[nspec, nwave] flux
            ivar: 2D[nspec, nwave] inverse variance of flux

        Optional:
            mask: 2D[nspec, nwave] integer bitmask of flux.  0=good.
            resolution_data: 3D[nspec, ndiag, nwave]
                             diagonals of resolution matrix data
            fibers: ndarray of which fibers these spectra are
            spectrograph: integer, which spectrograph [0-9]
            meta: dict-like object (e.g. FITS header)
            fibermap: fibermap table
            chi2pix: 2D[nspec, nwave] chi2 of 2D model to pixel-level data
                for pixels that contributed to each flux bin
            scores: dictionnary of 1D arrays of size nspec
            scores_comments: dictionnary of string (explaining the scores)
            suppress_res_warning: bool to suppress Warning message when the Resolution image is not read
        
        Parameters below allow on-the-fly resolution calculation
            wsigma: 2D[nspec,nwave] sigma widths for each wavelength bin for all fibers
        Notes:
            spectrograph input is used only if fibers is None.  In this case,
            it assumes nspec_per_spectrograph = flux.shape[0] and calculates
            the fibers array for this spectrograph, i.e.
            fibers = spectrograph * flux.shape[0] + np.arange(flux.shape[0])

        Attributes:
            All input args become object attributes.
            nspec : number of spectra, flux.shape[0]
            nwave : number of wavelengths, flux.shape[1]
            specmin : minimum fiber number
            R: array of sparse Resolution matrix objects converted
               from resolution_data
            fibermap: fibermap table if provided
        """
        assert wave.ndim == 1
        assert flux.ndim == 2
        assert wave.shape[0] == flux.shape[1]
        assert ivar.shape == flux.shape
        assert (mask is None) or mask.shape == flux.shape
        assert (mask is None) or mask.dtype in \
            (int, np.int64, np.int32, np.uint64, np.uint32), "Bad mask type "+str(mask.dtype)

        self.wave = wave
        self.flux = flux
        self.ivar = ivar
        self.meta = meta
        self.fibermap = fibermap
        self.nspec, self.nwave = self.flux.shape
        self.chi2pix = chi2pix
        self.scores = scores
        self.scores_comments = scores_comments
        self.ndiag = ndiag
        fibers_per_spectrograph = 500  #- hardcode; could get from desimodel

        if mask is None:
            self.mask = np.zeros(flux.shape, dtype=np.uint32)
        else:
            self.mask = util.mask32(mask)

        if resolution_data is not None:
            if resolution_data.ndim != 3 or \
               resolution_data.shape[0] != self.nspec or \
               resolution_data.shape[2] != self.nwave:
                raise ValueError(
                    "Wrong dimensions for resolution_data[nspec, ndiag, nwave]"
                )

        #- Maybe setup non-None identity matrix resolution matrix instead?
        self.wsigma = wsigma
        self.resolution_data = resolution_data
        if resolution_data is not None:
            self.wsigma = None  #ignore width coefficients if resolution data is given explicitly
            self.ndiag = None
            self.R = np.array([Resolution(r) for r in resolution_data])
        elif wsigma is not None:
            from desispec.quicklook.qlresolution import QuickResolution
            assert ndiag is not None
            r = []
            for sigma in wsigma:
                r.append(QuickResolution(sigma=sigma, ndiag=self.ndiag))
            self.R = np.array(r)
        else:
            #SK I believe this should be error, but looking at the
            #tests frame objects are allowed to not to have resolution data
            # thus I changed value error to a simple warning message.
            if not suppress_res_warning:
                log = get_logger()
                log.warning("Frame object is constructed without resolution data or respective "\
                        "sigma widths. Resolution will not be available")
            # raise ValueError("Need either resolution_data or coefficients to generate it")
        self.spectrograph = spectrograph

        # Deal with Fibers (these must be set!)
        if fibers is not None:
            fibers = np.asarray(fibers)
            if len(fibers) != self.nspec:
                raise ValueError("len(fibers) != nspec ({} != {})".format(
                    len(fibers), self.nspec))
            if fibermap is not None and np.any(fibers != fibermap['FIBER']):
                raise ValueError("fibermap doesn't match fibers")
            if (spectrograph is not None):
                minfiber = spectrograph * fibers_per_spectrograph
                maxfiber = (spectrograph + 1) * fibers_per_spectrograph
                if np.any(fibers < minfiber) or np.any(maxfiber <= fibers):
                    raise ValueError('fibers inconsistent with spectrograph')
            self.fibers = fibers
        else:
            if fibermap is not None:
                self.fibers = fibermap['FIBER']
            elif spectrograph is not None:
                self.fibers = spectrograph * fibers_per_spectrograph + np.arange(
                    self.nspec, dtype=int)
            elif (self.meta is not None) and ('FIBERMIN' in self.meta):
                self.fibers = self.meta['FIBERMIN'] + np.arange(self.nspec,
                                                                dtype=int)
            else:
                raise ValueError("Must set fibers by one of the methods!")

        if self.meta is not None:
            self.meta['FIBERMIN'] = np.min(self.fibers)
Ejemplo n.º 25
0
def compute_sky(frame, nsig_clipping=4.):
    """Compute a sky model.

    Input has to correspond to sky fibers only.
    Input flux are expected to be flatfielded!
    We don't check this in this routine.

    Args:
        frame : Frame object, which includes attributes
          - wave : 1D wavelength grid in Angstroms
          - flux : 2D flux[nspec, nwave] density
          - ivar : 2D inverse variance of flux
          - mask : 2D inverse mask flux (0=good)
          - resolution_data : 3D[nspec, ndiag, nwave]  (only sky fibers)
        nsig_clipping : [optional] sigma clipping value for outlier rejection

    returns SkyModel object with attributes wave, flux, ivar, mask
    """

    log = get_logger()
    log.info("starting")

    # Grab sky fibers on this frame
    skyfibers = np.where(frame.fibermap['OBJTYPE'] == 'SKY')[0]
    assert np.max(skyfibers) < 500  #- indices, not fiber numbers

    nwave = frame.nwave
    nfibers = len(skyfibers)

    current_ivar = frame.ivar[skyfibers].copy()
    flux = frame.flux[skyfibers]
    Rsky = frame.R[skyfibers]

    sqrtw = np.sqrt(current_ivar)
    sqrtwflux = sqrtw * flux

    chi2 = np.zeros(flux.shape)

    #debug
    #nfibers=min(nfibers,2)

    nout_tot = 0
    for iteration in range(20):

        A = scipy.sparse.lil_matrix((nwave, nwave)).tocsr()
        B = np.zeros((nwave))
        # diagonal sparse matrix with content = sqrt(ivar)*flat of a given fiber
        SD = scipy.sparse.lil_matrix((nwave, nwave))
        # loop on fiber to handle resolution
        for fiber in range(nfibers):
            if fiber % 10 == 0:
                log.info("iter %d fiber %d" % (iteration, fiber))
            R = Rsky[fiber]

            # diagonal sparse matrix with content = sqrt(ivar)
            SD.setdiag(sqrtw[fiber])

            sqrtwR = SD * R  # each row r of R is multiplied by sqrtw[r]

            A = A + (sqrtwR.T * sqrtwR).tocsr()
            B += sqrtwR.T * sqrtwflux[fiber]

        log.info("iter %d solving" % iteration)

        skyflux = cholesky_solve(A.todense(), B)

        log.info("iter %d compute chi2" % iteration)

        for fiber in range(nfibers):

            S = Rsky[fiber].dot(skyflux)
            chi2[fiber] = current_ivar[fiber] * (flux[fiber] - S)**2

        log.info("rejecting")

        nout_iter = 0
        if iteration < 1:
            # only remove worst outlier per wave
            # apply rejection iteratively, only one entry per wave among fibers
            # find waves with outlier (fastest way)
            nout_per_wave = np.sum(chi2 > nsig_clipping**2, axis=0)
            selection = np.where(nout_per_wave > 0)[0]
            for i in selection:
                worst_entry = np.argmax(chi2[:, i])
                current_ivar[worst_entry, i] = 0
                sqrtw[worst_entry, i] = 0
                sqrtwflux[worst_entry, i] = 0
                nout_iter += 1

        else:
            # remove all of them at once
            bad = (chi2 > nsig_clipping**2)
            current_ivar *= (bad == 0)
            sqrtw *= (bad == 0)
            sqrtwflux *= (bad == 0)
            nout_iter += np.sum(bad)

        nout_tot += nout_iter

        sum_chi2 = float(np.sum(chi2))
        ndf = int(np.sum(chi2 > 0) - nwave)
        chi2pdf = 0.
        if ndf > 0:
            chi2pdf = sum_chi2 / ndf
        log.info("iter #%d chi2=%f ndf=%d chi2pdf=%f nout=%d" %
                 (iteration, sum_chi2, ndf, chi2pdf, nout_iter))

        if nout_iter == 0:
            break

    log.info("nout tot=%d" % nout_tot)

    # solve once again to get deconvolved sky variance
    skyflux, skycovar = cholesky_solve_and_invert(A.todense(), B)

    #- sky inverse variance, but incomplete and not needed anyway
    # skyvar=np.diagonal(skycovar)
    # skyivar=(skyvar>0)/(skyvar+(skyvar==0))

    # Use diagonal of skycovar convolved with mean resolution of all fibers
    # first compute average resolution
    mean_res_data = np.mean(frame.resolution_data, axis=0)
    R = Resolution(mean_res_data)
    # compute convolved sky and ivar
    cskycovar = R.dot(skycovar).dot(R.T.todense())
    cskyvar = np.diagonal(cskycovar)
    cskyivar = (cskyvar > 0) / (cskyvar + (cskyvar == 0))

    # convert cskyivar to 2D; today it is the same for all spectra,
    # but that may not be the case in the future
    cskyivar = np.tile(cskyivar, frame.nspec).reshape(frame.nspec, nwave)

    # Convolved sky
    cskyflux = np.zeros(frame.flux.shape)
    for i in range(frame.nspec):
        cskyflux[i] = frame.R[i].dot(skyflux)

    # need to do better here
    mask = (cskyivar == 0).astype(np.uint32)

    return SkyModel(frame.wave.copy(), cskyflux, cskyivar, mask, nrej=nout_tot)
Ejemplo n.º 26
0
    def __init__(self,
                 wave,
                 flux,
                 ivar,
                 mask=None,
                 resolution_data=None,
                 fibers=None,
                 spectrograph=None,
                 meta=None,
                 fibermap=None,
                 chi2pix=None):
        """
        Lightweight wrapper for multiple spectra on a common wavelength grid

        x.wave, x.flux, x.ivar, x.mask, x.resolution_data, x.header, sp.R
        
        Args:
            wave: 1D[nwave] wavelength in Angstroms
            flux: 2D[nspec, nwave] flux
            ivar: 2D[nspec, nwave] inverse variance of flux

        Optional:
            mask: 2D[nspec, nwave] integer bitmask of flux.  0=good.
            resolution_data: 3D[nspec, ndiag, nwave]
                             diagonals of resolution matrix data
            fibers: ndarray of which fibers these spectra are
            spectrograph: integer, which spectrograph [0-9]
            meta: dict-like object (e.g. FITS header)
            fibermap: fibermap table
            chi2pix: 2D[nspec, nwave] chi2 of 2D model to pixel-level data
                for pixels that contributed to each flux bin

        Notes:
            spectrograph input is used only if fibers is None.  In this case,
            it assumes nspec_per_spectrograph = flux.shape[0] and calculates
            the fibers array for this spectrograph, i.e.
            fibers = spectrograph * flux.shape[0] + np.arange(flux.shape[0])

        Attributes:
            All input args become object attributes.
            nspec : number of spectra, flux.shape[0]
            nwave : number of wavelengths, flux.shape[1]
            specmin : minimum fiber number
            R: array of sparse Resolution matrix objects converted
               from resolution_data
            fibermap: fibermap table if provided
        """
        assert wave.ndim == 1
        assert flux.ndim == 2
        assert wave.shape[0] == flux.shape[1]
        assert ivar.shape == flux.shape
        assert (mask is None) or mask.shape == flux.shape
        assert (mask is None) or mask.dtype in \
            (int, np.int64, np.int32, np.uint64, np.uint32), "Bad mask type "+str(mask.dtype)

        self.wave = wave
        self.flux = flux
        self.ivar = ivar
        self.meta = meta
        self.fibermap = fibermap
        self.nspec, self.nwave = self.flux.shape
        self.chi2pix = chi2pix

        fibers_per_spectrograph = 500  #- hardcode; could get from desimodel

        if mask is None:
            self.mask = np.zeros(flux.shape, dtype=np.uint32)
        else:
            self.mask = util.mask32(mask)

        if resolution_data is not None:
            if resolution_data.ndim != 3 or \
               resolution_data.shape[0] != self.nspec or \
               resolution_data.shape[2] != self.nwave:
                raise ValueError(
                    "Wrong dimensions for resolution_data[nspec, ndiag, nwave]"
                )

        #- Maybe setup non-None identity matrix resolution matrix instead?
        self.resolution_data = resolution_data
        if resolution_data is not None:
            self.R = np.array([Resolution(r) for r in resolution_data])

        self.spectrograph = spectrograph

        # Deal with Fibers (these must be set!)
        if fibers is not None:
            fibers = np.asarray(fibers)
            if len(fibers) != self.nspec:
                raise ValueError("len(fibers) != nspec ({} != {})".format(
                    len(fibers), self.nspec))
            if fibermap is not None and np.any(fibers != fibermap['FIBER']):
                raise ValueError("fibermap doesn't match fibers")
            if (spectrograph is not None):
                minfiber = spectrograph * fibers_per_spectrograph
                maxfiber = (spectrograph + 1) * fibers_per_spectrograph
                if np.any(fibers < minfiber) or np.any(maxfiber <= fibers):
                    raise ValueError('fibers inconsistent with spectrograph')
            self.fibers = fibers
        else:
            if fibermap is not None:
                self.fibers = fibermap['FIBER']
            elif spectrograph is not None:
                self.fibers = spectrograph * fibers_per_spectrograph + np.arange(
                    self.nspec, dtype=int)
            elif (self.meta is not None) and ('FIBERMIN' in self.meta):
                self.fibers = self.meta['FIBERMIN'] + np.arange(self.nspec,
                                                                dtype=int)
            else:
                raise ValueError("Must set fibers by one of the methods!")

        if self.meta is not None:
            self.meta['FIBERMIN'] = np.min(self.fibers)
Ejemplo n.º 27
0
def sim_source_spectra(allinfo, allzbest, infofile='source-truth.fits', debug=False):
    """Build the residual (source) spectra. No redshift-fitting.

    """
    from desispec.io import read_spectra, write_spectra
    from desispec.spectra import Spectra
    from desispec.interpolation import resample_flux
    from desispec.resolution import Resolution

    from redrock.external.desi import DistTargetsDESI
    from redrock.templates import find_templates, Template

    assert(np.all(allinfo['TARGETID'] == allzbest['TARGETID']))

    nsim = len(allinfo)

    # Select the subset of objects for which we got the correct lens (BGS)
    # redshift.
    these = np.where((allzbest['SPECTYPE'] == 'GALAXY') *
                     (np.abs(allzbest['Z'] - allinfo['LENS_Z']) < 0.003))[0]
    print('Selecting {}/{} lenses with the correct redshift'.format(len(these), nsim))
    if len(these) == 0:
        raise ValueError('No spectra passed the cuts!')

    allinfo = allinfo[these]
    allzbest = allzbest[these]

    print('Writing {}'.format(infofile))
    allinfo.write(infofile, overwrite=True)

    tempfile = find_templates()[0]
    rrtemp = Template(tempfile)
    
    # loop on each chunk of lens+source spectra
    nchunk = len(set(allinfo['CHUNK']))
    for ichunk in set(allinfo['CHUNK']):

        I = np.where(allinfo['CHUNK'] == ichunk)[0]
        info = allinfo[I]
        zbest = allzbest[I]
        
        specfile = 'lenssource-spectra-chunk{:03d}.fits'.format(ichunk)
        sourcefile = 'source-spectra-chunk{:03d}.fits'.format(ichunk)
        spectra = read_spectra(specfile).select(targets=info['TARGETID'])
        for igal, zz in enumerate(zbest):
            zwave = rrtemp.wave * (1 + zz['Z'])
            zflux = rrtemp.flux.T.dot(zz['COEFF']).T #/ (1 + zz['Z'])
            if debug:
                fig, ax = plt.subplots()
            for band in spectra.bands:
                R = Resolution(spectra.resolution_data[band][igal])
                # use fastspecfit here
                modelflux = R.dot(resample_flux(spectra.wave[band], zwave, zflux))
                if debug:
                    ax.plot(spectra.wave[band], spectra.flux[band][igal, :])
                    ax.plot(spectra.wave[band], modelflux)
                    ax.set_ylim(np.median(spectra.flux['r'][igal, :]) + np.std(spectra.flux['r'][igal, :]) * np.array([-1.5, 3]))
                    #ax.set_xlim(4500, 5500)
                spectra.flux[band][igal, :] -= modelflux # subtract
            if debug:
                qafile = 'source-spectra-chunk{:03d}-{}.png'.format(ichunk, igal)
                fig.savefig(qafile)
                plt.close()

        print('Writing {} spectra to {}'.format(len(zbest), sourcefile))
        write_spectra(outfile=sourcefile, spec=spectra)

    return allinfo    
Ejemplo n.º 28
0
def sim_spectra(wave, flux, program, spectra_filename, obsconditions=None,
                sourcetype=None, targetid=None, redshift=None, expid=0, seed=0, skyerr=0.0, ra=None, dec=None, meta=None, fibermap_columns=None, fullsim=False,use_poisson=True):
    """
    Simulate spectra from an input set of wavelength and flux and writes a FITS file in the Spectra format that can
    be used as input to the redshift fitter.

    Args:
        wave : 1D np.array of wavelength in Angstrom (in vacuum) in observer frame (i.e. redshifted)
        flux : 1D or 2D np.array. 1D array must have same size as wave, 2D array must have shape[1]=wave.size
               flux has to be in units of 10^-17 ergs/s/cm2/A
        spectra_filename : path to output FITS file in the Spectra format
        program : dark, lrg, qso, gray, grey, elg, bright, mws, bgs
            ignored if obsconditions is not None
    
    Optional:
        obsconditions : dictionnary of observation conditions with SEEING EXPTIME AIRMASS MOONFRAC MOONALT MOONSEP
        sourcetype : list of string, allowed values are (sky,elg,lrg,qso,bgs,star), type of sources, used for fiber aperture loss , default is star
        targetid : list of targetids for each target. default of None has them generated as str(range(nspec))
        redshift : list/array with each index being the redshifts for that target
        expid : this expid number will be saved in the Spectra fibermap
        seed : random seed
        skyerr : fractional sky subtraction error
        ra : numpy array with targets RA (deg)
        dec : numpy array with targets Dec (deg)
        meta : dictionnary, saved in primary fits header of the spectra file 
        fibermap_columns : add these columns to the fibermap
        fullsim : if True, write full simulation data in extra file per camera
        use_poisson : if False, do not use numpy.random.poisson to simulate the Poisson noise. This is useful to get reproducible random realizations.
    """
    log = get_logger()
    
    if len(flux.shape)==1 :
        flux=flux.reshape((1,flux.size))
    nspec=flux.shape[0]
    
    log.info("Starting simulation of {} spectra".format(nspec))
    
    if sourcetype is None :        
        sourcetype = np.array(["star" for i in range(nspec)])
    log.debug("sourcetype = {}".format(sourcetype))
    
    tileid  = 0
    telera  = 0
    teledec = 0    
    dateobs = time.gmtime()
    night   = desisim.obs.get_night(utc=dateobs)
    program = program.lower()
        
       
    frame_fibermap = desispec.io.fibermap.empty_fibermap(nspec)    
    frame_fibermap.meta["FLAVOR"]="custom"
    frame_fibermap.meta["NIGHT"]=night
    frame_fibermap.meta["EXPID"]=expid
    
    # add DESI_TARGET 
    tm = desitarget.targetmask.desi_mask
    frame_fibermap['DESI_TARGET'][sourcetype=="star"]=tm.STD_FAINT
    frame_fibermap['DESI_TARGET'][sourcetype=="lrg"]=tm.LRG
    frame_fibermap['DESI_TARGET'][sourcetype=="elg"]=tm.ELG
    frame_fibermap['DESI_TARGET'][sourcetype=="qso"]=tm.QSO
    frame_fibermap['DESI_TARGET'][sourcetype=="sky"]=tm.SKY
    frame_fibermap['DESI_TARGET'][sourcetype=="bgs"]=tm.BGS_ANY
    
    
    if fibermap_columns is not None :
        for k in fibermap_columns.keys() :
            frame_fibermap[k] = fibermap_columns[k]
        
    if targetid is None:
        targetid = np.arange(nspec).astype(int)
        
    # add TARGETID
    frame_fibermap['TARGETID'] = targetid
         
    # spectra fibermap has two extra fields : night and expid
    # This would be cleaner if desispec would provide the spectra equivalent
    # of desispec.io.empty_fibermap()
    spectra_fibermap = desispec.io.empty_fibermap(nspec)
    spectra_fibermap = desispec.io.util.add_columns(spectra_fibermap,
                       ['NIGHT', 'EXPID', 'TILEID'],
                       [np.int32(night), np.int32(expid), np.int32(tileid)],
                       )

    for s in range(nspec):
        for tp in frame_fibermap.dtype.fields:
            spectra_fibermap[s][tp] = frame_fibermap[s][tp]
 
    if ra is not None :
        spectra_fibermap["TARGET_RA"] = ra
        spectra_fibermap["FIBER_RA"]    = ra
    if dec is not None :
        spectra_fibermap["TARGET_DEC"] = dec
        spectra_fibermap["FIBER_DEC"]    = dec
            
    if obsconditions is None:
        if program in ['dark', 'lrg', 'qso']:
            obsconditions = desisim.simexp.reference_conditions['DARK']
        elif program in ['elg', 'gray', 'grey']:
            obsconditions = desisim.simexp.reference_conditions['GRAY']
        elif program in ['mws', 'bgs', 'bright']:
            obsconditions = desisim.simexp.reference_conditions['BRIGHT']
        else:
            raise ValueError('unknown program {}'.format(program))
    elif isinstance(obsconditions, str):
        try:
            obsconditions = desisim.simexp.reference_conditions[obsconditions.upper()]
        except KeyError:
            raise ValueError('obsconditions {} not in {}'.format(
                obsconditions.upper(),
                list(desisim.simexp.reference_conditions.keys())))
    try:
        params = desimodel.io.load_desiparams()
        wavemin = params['ccd']['b']['wavemin']
        wavemax = params['ccd']['z']['wavemax']
    except KeyError:
        wavemin = desimodel.io.load_throughput('b').wavemin
        wavemax = desimodel.io.load_throughput('z').wavemax

    if wave[0] > wavemin:
        log.warning('Minimum input wavelength {}>{}; padding with zeros'.format(
                wave[0], wavemin))
        dwave = wave[1] - wave[0]
        npad = int((wave[0] - wavemin)/dwave + 1)
        wavepad = np.arange(npad) * dwave
        wavepad += wave[0] - dwave - wavepad[-1]
        fluxpad = np.zeros((flux.shape[0], len(wavepad)), dtype=flux.dtype)
        wave = np.concatenate([wavepad, wave])
        flux = np.hstack([fluxpad, flux])
        assert flux.shape[1] == len(wave)
        assert np.allclose(dwave, np.diff(wave))
        assert wave[0] <= wavemin

    if wave[-1] < wavemax:
        log.warning('Maximum input wavelength {}<{}; padding with zeros'.format(
                wave[-1], wavemax))
        dwave = wave[-1] - wave[-2]
        npad = int( (wavemax - wave[-1])/dwave + 1 )
        wavepad = wave[-1] + dwave + np.arange(npad)*dwave
        fluxpad = np.zeros((flux.shape[0], len(wavepad)), dtype=flux.dtype)
        wave = np.concatenate([wave, wavepad])
        flux = np.hstack([flux, fluxpad])
        assert flux.shape[1] == len(wave)
        assert np.allclose(dwave, np.diff(wave))
        assert wavemax <= wave[-1]

    ii = (wavemin <= wave) & (wave <= wavemax)

    flux_unit = 1e-17 * u.erg / (u.Angstrom * u.s * u.cm ** 2 )
    
    wave = wave[ii]*u.Angstrom
    flux = flux[:,ii]*flux_unit

    sim = desisim.simexp.simulate_spectra(wave, flux, fibermap=frame_fibermap,
        obsconditions=obsconditions, redshift=redshift, seed=seed,
        psfconvolve=True)

    random_state = np.random.RandomState(seed)
    sim.generate_random_noise(random_state,use_poisson=use_poisson)

    scale=1e17
    specdata = None

    resolution={}
    for camera in sim.instrument.cameras:
        R = Resolution(camera.get_output_resolution_matrix())
        resolution[camera.name] = np.tile(R.to_fits_array(), [nspec, 1, 1])

    skyscale = skyerr * random_state.normal(size=sim.num_fibers)

    if fullsim :
        for table in sim.camera_output :
            band  = table.meta['name'].strip()[0]
            table_filename=spectra_filename.replace(".fits","-fullsim-{}.fits".format(band))
            table.write(table_filename,format="fits",overwrite=True)
            print("wrote",table_filename)

    for table in sim.camera_output :
        
        wave = table['wavelength'].astype(float)
        flux = (table['observed_flux']+table['random_noise_electrons']*table['flux_calibration']).T.astype(float)
        if np.any(skyscale):
            flux += ((table['num_sky_electrons']*skyscale)*table['flux_calibration']).T.astype(float)

        ivar = table['flux_inverse_variance'].T.astype(float)
        
        band  = table.meta['name'].strip()[0]
        
        flux = flux * scale
        ivar = ivar / scale**2
        mask  = np.zeros(flux.shape).astype(int)
        
        spec = Spectra([band], {band : wave}, {band : flux}, {band : ivar}, 
                       resolution_data={band : resolution[band]}, 
                       mask={band : mask}, 
                       fibermap=spectra_fibermap, 
                       meta=meta,
                       single=True)
        
        if specdata is None :
            specdata = spec
        else :
            specdata.update(spec)
    
    desispec.io.write_spectra(spectra_filename, specdata)        
    log.info('Wrote '+spectra_filename)
    
    # need to clear the simulation buffers that keeps growing otherwise
    # because of a different number of fibers each time ...
    desisim.specsim._simulators.clear()
    desisim.specsim._simdefaults.clear()
Ejemplo n.º 29
0
def main(args):

    # Set up the logger
    if args.verbose:
        log = get_logger(DEBUG)
    else:
        log = get_logger()

    # Make sure all necessary environment variables are set
    DESI_SPECTRO_REDUX_DIR = "./quickGen"

    if 'DESI_SPECTRO_REDUX' not in os.environ:

        log.info('DESI_SPECTRO_REDUX environment is not set.')

    else:
        DESI_SPECTRO_REDUX_DIR = os.environ['DESI_SPECTRO_REDUX']

    if os.path.exists(DESI_SPECTRO_REDUX_DIR):

        if not os.path.isdir(DESI_SPECTRO_REDUX_DIR):
            raise RuntimeError("Path %s Not a directory" %
                               DESI_SPECTRO_REDUX_DIR)
    else:
        try:
            os.makedirs(DESI_SPECTRO_REDUX_DIR)
        except:
            raise

    SPECPROD_DIR = 'specprod'
    if 'SPECPROD' not in os.environ:
        log.info('SPECPROD environment is not set.')
    else:
        SPECPROD_DIR = os.environ['SPECPROD']
    prod_Dir = specprod_root()

    if os.path.exists(prod_Dir):

        if not os.path.isdir(prod_Dir):
            raise RuntimeError("Path %s Not a directory" % prod_Dir)
    else:
        try:
            os.makedirs(prod_Dir)
        except:
            raise

    # Initialize random number generator to use.
    np.random.seed(args.seed)
    random_state = np.random.RandomState(args.seed)

    # Derive spectrograph number from nstart if needed
    if args.spectrograph is None:
        args.spectrograph = args.nstart / 500

    # Read fibermapfile to get object type, night and expid
    if args.fibermap:
        log.info("Reading fibermap file {}".format(args.fibermap))
        fibermap = read_fibermap(args.fibermap)
        objtype = get_source_types(fibermap)
        stdindx = np.where(objtype == 'STD')  # match STD with STAR
        mwsindx = np.where(objtype == 'MWS_STAR')  # match MWS_STAR with STAR
        bgsindx = np.where(objtype == 'BGS')  # match BGS with LRG
        objtype[stdindx] = 'STAR'
        objtype[mwsindx] = 'STAR'
        objtype[bgsindx] = 'LRG'
        NIGHT = fibermap.meta['NIGHT']
        EXPID = fibermap.meta['EXPID']
    else:
        # Create a blank fake fibermap
        fibermap = empty_fibermap(args.nspec)
        targetids = random_state.randint(2**62, size=args.nspec)
        fibermap['TARGETID'] = targetids
        night = get_night()
        expid = 0

    log.info("Initializing SpecSim with config {}".format(args.config))
    desiparams = load_desiparams()
    qsim = get_simulator(args.config, num_fibers=1)

    if args.simspec:
        # Read the input file
        log.info('Reading input file {}'.format(args.simspec))
        simspec = desisim.io.read_simspec(args.simspec)
        nspec = simspec.nspec
        if simspec.flavor == 'arc':
            log.warning("quickgen doesn't generate flavor=arc outputs")
            return
        else:
            wavelengths = simspec.wave
            spectra = simspec.flux
        if nspec < args.nspec:
            log.info("Only {} spectra in input file".format(nspec))
            args.nspec = nspec

    else:
        # Initialize the output truth table.
        spectra = []
        wavelengths = qsim.source.wavelength_out.to(u.Angstrom).value
        npix = len(wavelengths)
        truth = dict()
        meta = Table()
        truth['OBJTYPE'] = np.zeros(args.nspec, dtype=(str, 10))
        truth['FLUX'] = np.zeros((args.nspec, npix))
        truth['WAVE'] = wavelengths
        jj = list()

        for thisobj in set(true_objtype):
            ii = np.where(true_objtype == thisobj)[0]
            nobj = len(ii)
            truth['OBJTYPE'][ii] = thisobj
            log.info('Generating {} template'.format(thisobj))

            # Generate the templates
            if thisobj == 'ELG':
                elg = desisim.templates.ELG(wave=wavelengths,
                                            add_SNeIa=args.add_SNeIa)
                flux, tmpwave, meta1 = elg.make_templates(
                    nmodel=nobj,
                    seed=args.seed,
                    zrange=args.zrange_elg,
                    sne_rfluxratiorange=args.sne_rfluxratiorange)
            elif thisobj == 'LRG':
                lrg = desisim.templates.LRG(wave=wavelengths,
                                            add_SNeIa=args.add_SNeIa)
                flux, tmpwave, meta1 = lrg.make_templates(
                    nmodel=nobj,
                    seed=args.seed,
                    zrange=args.zrange_lrg,
                    sne_rfluxratiorange=args.sne_rfluxratiorange)
            elif thisobj == 'QSO':
                qso = desisim.templates.QSO(wave=wavelengths)
                flux, tmpwave, meta1 = qso.make_templates(
                    nmodel=nobj, seed=args.seed, zrange=args.zrange_qso)
            elif thisobj == 'BGS':
                bgs = desisim.templates.BGS(wave=wavelengths,
                                            add_SNeIa=args.add_SNeIa)
                flux, tmpwave, meta1 = bgs.make_templates(
                    nmodel=nobj,
                    seed=args.seed,
                    zrange=args.zrange_bgs,
                    rmagrange=args.rmagrange_bgs,
                    sne_rfluxratiorange=args.sne_rfluxratiorange)
            elif thisobj == 'STD':
                std = desisim.templates.STD(wave=wavelengths)
                flux, tmpwave, meta1 = std.make_templates(nmodel=nobj,
                                                          seed=args.seed)
            elif thisobj == 'QSO_BAD':  # use STAR template no color cuts
                star = desisim.templates.STAR(wave=wavelengths)
                flux, tmpwave, meta1 = star.make_templates(nmodel=nobj,
                                                           seed=args.seed)
            elif thisobj == 'MWS_STAR' or thisobj == 'MWS':
                mwsstar = desisim.templates.MWS_STAR(wave=wavelengths)
                flux, tmpwave, meta1 = mwsstar.make_templates(nmodel=nobj,
                                                              seed=args.seed)
            elif thisobj == 'WD':
                wd = desisim.templates.WD(wave=wavelengths)
                flux, tmpwave, meta1 = wd.make_templates(nmodel=nobj,
                                                         seed=args.seed)
            elif thisobj == 'SKY':
                flux = np.zeros((nobj, npix))
                meta1 = Table(dict(REDSHIFT=np.zeros(nobj, dtype=np.float32)))
            elif thisobj == 'TEST':
                flux = np.zeros((args.nspec, npix))
                indx = np.where(wave > 5800.0 - 1E-6)[0][0]
                ref_integrated_flux = 1E-10
                ref_cst_flux_density = 1E-17
                single_line = (np.arange(args.nspec) % 2 == 0).astype(
                    np.float32)
                continuum = (np.arange(args.nspec) % 2 == 1).astype(np.float32)

                for spec in range(args.nspec):
                    flux[spec, indx] = single_line[
                        spec] * ref_integrated_flux / np.gradient(wavelengths)[
                            indx]  # single line
                    flux[spec] += continuum[
                        spec] * ref_cst_flux_density  # flat continuum

                meta1 = Table(
                    dict(REDSHIFT=np.zeros(args.nspec, dtype=np.float32),
                         LINE=wave[indx] *
                         np.ones(args.nspec, dtype=np.float32),
                         LINEFLUX=single_line * ref_integrated_flux,
                         CONSTFLUXDENSITY=continuum * ref_cst_flux_density))
            else:
                log.fatal('Unknown object type {}'.format(thisobj))
                sys.exit(1)

            # Pack it in.
            truth['FLUX'][ii] = flux
            meta = vstack([meta, meta1])
            jj.append(ii.tolist())

            # Sanity check on units; templates currently return ergs, not 1e-17 ergs...
            # assert (thisobj == 'SKY') or (np.max(truth['FLUX']) < 1e-6)

        # Sort the metadata table.
        jj = sum(jj, [])
        meta_new = Table()
        for k in range(args.nspec):
            index = int(np.where(np.array(jj) == k)[0])
            meta_new = vstack([meta_new, meta[index]])
        meta = meta_new

        # Add TARGETID and the true OBJTYPE to the metadata table.
        meta.add_column(
            Column(true_objtype, dtype=(str, 10), name='TRUE_OBJTYPE'))
        meta.add_column(Column(targetids, name='TARGETID'))

        # Rename REDSHIFT -> TRUEZ anticipating later table joins with zbest.Z
        meta.rename_column('REDSHIFT', 'TRUEZ')

    # explicitly set location on focal plane if needed to support airmass
    # variations when using specsim v0.5
    if qsim.source.focal_xy is None:
        qsim.source.focal_xy = (u.Quantity(0, 'mm'), u.Quantity(100, 'mm'))

    # Set simulation parameters from the simspec header or desiparams
    bright_objects = ['bgs', 'mws', 'bright', 'BGS', 'MWS', 'BRIGHT_MIX']
    gray_objects = ['gray', 'grey']
    if args.simspec is None:
        object_type = objtype
        flavor = None
    elif simspec.flavor == 'science':
        object_type = None
        flavor = simspec.header['PROGRAM']
    else:
        object_type = None
        flavor = simspec.flavor
        log.warning(
            'Maybe using an outdated simspec file with flavor={}'.format(
                flavor))

    # Set airmass
    if args.airmass is not None:
        qsim.atmosphere.airmass = args.airmass
    elif args.simspec and 'AIRMASS' in simspec.header:
        qsim.atmosphere.airmass = simspec.header['AIRMASS']
    else:
        qsim.atmosphere.airmass = 1.25  # Science Req. Doc L3.3.2

    # Set exptime
    if args.exptime is not None:
        qsim.observation.exposure_time = args.exptime * u.s
    elif args.simspec and 'EXPTIME' in simspec.header:
        qsim.observation.exposure_time = simspec.header['EXPTIME'] * u.s
    elif objtype in bright_objects:
        qsim.observation.exposure_time = desiparams['exptime_bright'] * u.s
    else:
        qsim.observation.exposure_time = desiparams['exptime_dark'] * u.s

    # Set Moon Phase
    if args.moon_phase is not None:
        qsim.atmosphere.moon.moon_phase = args.moon_phase
    elif args.simspec and 'MOONFRAC' in simspec.header:
        qsim.atmosphere.moon.moon_phase = simspec.header['MOONFRAC']
    elif flavor in bright_objects or object_type in bright_objects:
        qsim.atmosphere.moon.moon_phase = 0.7
    elif flavor in gray_objects:
        qsim.atmosphere.moon.moon_phase = 0.1
    else:
        qsim.atmosphere.moon.moon_phase = 0.5

    # Set Moon Zenith
    if args.moon_zenith is not None:
        qsim.atmosphere.moon.moon_zenith = args.moon_zenith * u.deg
    elif args.simspec and 'MOONALT' in simspec.header:
        qsim.atmosphere.moon.moon_zenith = simspec.header['MOONALT'] * u.deg
    elif flavor in bright_objects or object_type in bright_objects:
        qsim.atmosphere.moon.moon_zenith = 30 * u.deg
    elif flavor in gray_objects:
        qsim.atmosphere.moon.moon_zenith = 80 * u.deg
    else:
        qsim.atmosphere.moon.moon_zenith = 100 * u.deg

    # Set Moon - Object Angle
    if args.moon_angle is not None:
        qsim.atmosphere.moon.separation_angle = args.moon_angle * u.deg
    elif args.simspec and 'MOONSEP' in simspec.header:
        qsim.atmosphere.moon.separation_angle = simspec.header[
            'MOONSEP'] * u.deg
    elif flavor in bright_objects or object_type in bright_objects:
        qsim.atmosphere.moon.separation_angle = 50 * u.deg
    elif flavor in gray_objects:
        qsim.atmosphere.moon.separation_angle = 60 * u.deg
    else:
        qsim.atmosphere.moon.separation_angle = 60 * u.deg

    # Initialize per-camera output arrays that will be saved
    waves, trueflux, noisyflux, obsivar, resolution, sflux = {}, {}, {}, {}, {}, {}

    maxbin = 0
    nmax = args.nspec
    for camera in qsim.instrument.cameras:
        # Lookup this camera's resolution matrix and convert to the sparse
        # format used in desispec.
        R = Resolution(camera.get_output_resolution_matrix())
        resolution[camera.name] = np.tile(R.to_fits_array(),
                                          [args.nspec, 1, 1])
        waves[camera.name] = (camera.output_wavelength.to(
            u.Angstrom).value.astype(np.float32))
        nwave = len(waves[camera.name])
        maxbin = max(maxbin, len(waves[camera.name]))
        nobj = np.zeros((nmax, 3, maxbin))  # object photons
        nsky = np.zeros((nmax, 3, maxbin))  # sky photons
        nivar = np.zeros((nmax, 3, maxbin))  # inverse variance (object+sky)
        cframe_observedflux = np.zeros(
            (nmax, 3, maxbin))  # calibrated object flux
        cframe_ivar = np.zeros(
            (nmax, 3, maxbin))  # inverse variance of calibrated object flux
        cframe_rand_noise = np.zeros(
            (nmax, 3, maxbin))  # random Gaussian noise to calibrated flux
        sky_ivar = np.zeros((nmax, 3, maxbin))  # inverse variance of sky
        sky_rand_noise = np.zeros(
            (nmax, 3, maxbin))  # random Gaussian noise to sky only
        frame_rand_noise = np.zeros(
            (nmax, 3, maxbin))  # random Gaussian noise to nobj+nsky
        trueflux[camera.name] = np.empty(
            (args.nspec, nwave))  # calibrated flux
        noisyflux[camera.name] = np.empty(
            (args.nspec, nwave))  # observed flux with noise
        obsivar[camera.name] = np.empty(
            (args.nspec, nwave))  # inverse variance of flux
        if args.simspec:
            for i in range(10):
                cn = camera.name + str(i)
                if cn in simspec.cameras:
                    dw = np.gradient(simspec.cameras[cn].wave)
                    break
            else:
                raise RuntimeError(
                    'Unable to find a {} camera in input simspec'.format(
                        camera))
        else:
            sflux = np.empty((args.nspec, npix))

    #- Check if input simspec is for a continuum flat lamp instead of science
    #- This does not convolve to per-fiber resolution
    if args.simspec:
        if simspec.flavor == 'flat':
            log.info("Simulating flat lamp exposure")
            for i, camera in enumerate(qsim.instrument.cameras):
                channel = camera.name  #- from simspec, b/r/z not b0/r1/z9
                assert camera.output_wavelength.unit == u.Angstrom
                num_pixels = len(waves[channel])

                phot = list()
                for j in range(10):
                    cn = camera.name + str(j)
                    if cn in simspec.cameras:
                        camwave = simspec.cameras[cn].wave
                        dw = np.gradient(camwave)
                        phot.append(simspec.cameras[cn].phot)

                if len(phot) == 0:
                    raise RuntimeError(
                        'Unable to find a {} camera in input simspec'.format(
                            camera))
                else:
                    phot = np.vstack(phot)

                meanspec = resample_flux(waves[channel], camwave,
                                         np.average(phot / dw, axis=0))

                fiberflat = random_state.normal(loc=1.0,
                                                scale=1.0 / np.sqrt(meanspec),
                                                size=(nspec, num_pixels))
                ivar = np.tile(meanspec, [nspec, 1])
                mask = np.zeros((simspec.nspec, num_pixels), dtype=np.uint32)

                for kk in range((args.nspec + args.nstart - 1) // 500 + 1):
                    camera = channel + str(kk)
                    outfile = desispec.io.findfile('fiberflat', NIGHT, EXPID,
                                                   camera)
                    start = max(500 * kk, args.nstart)
                    end = min(500 * (kk + 1), nmax)

                    if (args.spectrograph <= kk):
                        log.info(
                            "Writing files for channel:{}, spectrograph:{}, spectra:{} to {}"
                            .format(channel, kk, start, end))

                    ff = FiberFlat(waves[channel],
                                   fiberflat[start:end, :],
                                   ivar[start:end, :],
                                   mask[start:end, :],
                                   meanspec,
                                   header=dict(CAMERA=camera))
                    write_fiberflat(outfile, ff)
                    filePath = desispec.io.findfile("fiberflat", NIGHT, EXPID,
                                                    camera)
                    log.info("Wrote file {}".format(filePath))

            sys.exit(0)

    # Repeat the simulation for all spectra
    fluxunits = 1e-17 * u.erg / (u.s * u.cm**2 * u.Angstrom)
    for j in range(args.nspec):

        thisobjtype = objtype[j]
        sys.stdout.flush()
        if flavor == 'arc':
            qsim.source.update_in('Quickgen source {0}'.format, 'perfect',
                                  wavelengths * u.Angstrom,
                                  spectra * fluxunits)
        else:
            qsim.source.update_in('Quickgen source {0}'.format(j),
                                  thisobjtype.lower(),
                                  wavelengths * u.Angstrom,
                                  spectra[j, :] * fluxunits)
        qsim.source.update_out()

        qsim.simulate()
        qsim.generate_random_noise(random_state)

        for i, output in enumerate(qsim.camera_output):
            assert output['observed_flux'].unit == 1e17 * fluxunits
            # Extract the simulation results needed to create our uncalibrated
            # frame output file.
            num_pixels = len(output)
            nobj[j, i, :num_pixels] = output['num_source_electrons'][:, 0]
            nsky[j, i, :num_pixels] = output['num_sky_electrons'][:, 0]
            nivar[j, i, :num_pixels] = 1.0 / output['variance_electrons'][:, 0]

            # Get results for our flux-calibrated output file.
            cframe_observedflux[
                j, i, :num_pixels] = 1e17 * output['observed_flux'][:, 0]
            cframe_ivar[
                j,
                i, :num_pixels] = 1e-34 * output['flux_inverse_variance'][:, 0]

            # Fill brick arrays from the results.
            camera = output.meta['name']
            trueflux[camera][j][:] = 1e17 * output['observed_flux'][:, 0]
            noisyflux[camera][j][:] = 1e17 * (
                output['observed_flux'][:, 0] +
                output['flux_calibration'][:, 0] *
                output['random_noise_electrons'][:, 0])
            obsivar[camera][j][:] = 1e-34 * output['flux_inverse_variance'][:,
                                                                            0]

            # Use the same noise realization in the cframe and frame, without any
            # additional noise from sky subtraction for now.
            frame_rand_noise[
                j, i, :num_pixels] = output['random_noise_electrons'][:, 0]
            cframe_rand_noise[j, i, :num_pixels] = 1e17 * (
                output['flux_calibration'][:, 0] *
                output['random_noise_electrons'][:, 0])

            # The sky output file represents a model fit to ~40 sky fibers.
            # We reduce the variance by a factor of 25 to account for this and
            # give the sky an independent (Gaussian) noise realization.
            sky_ivar[
                j,
                i, :num_pixels] = 25.0 / (output['variance_electrons'][:, 0] -
                                          output['num_source_electrons'][:, 0])
            sky_rand_noise[j, i, :num_pixels] = random_state.normal(
                scale=1.0 / np.sqrt(sky_ivar[j, i, :num_pixels]),
                size=num_pixels)

    armName = {"b": 0, "r": 1, "z": 2}
    for channel in 'brz':

        #Before writing, convert from counts/bin to counts/A (as in Pixsim output)
        #Quicksim Default:
        #FLUX - input spectrum resampled to this binning; no noise added [1e-17 erg/s/cm2/s/Ang]
        #COUNTS_OBJ - object counts in 0.5 Ang bin
        #COUNTS_SKY - sky counts in 0.5 Ang bin

        num_pixels = len(waves[channel])
        dwave = np.gradient(waves[channel])
        nobj[:, armName[channel], :num_pixels] /= dwave
        frame_rand_noise[:, armName[channel], :num_pixels] /= dwave
        nivar[:, armName[channel], :num_pixels] *= dwave**2
        nsky[:, armName[channel], :num_pixels] /= dwave
        sky_rand_noise[:, armName[channel], :num_pixels] /= dwave
        sky_ivar[:, armName[channel], :num_pixels] /= dwave**2

        # Now write the outputs in DESI standard file system. None of the output file can have more than 500 spectra

        # Looping over spectrograph
        for ii in range((args.nspec + args.nstart - 1) // 500 + 1):

            start = max(500 * ii,
                        args.nstart)  # first spectrum for a given spectrograph
            end = min(500 * (ii + 1),
                      nmax)  # last spectrum for the spectrograph

            if (args.spectrograph <= ii):
                camera = "{}{}".format(channel, ii)
                log.info(
                    "Writing files for channel:{}, spectrograph:{}, spectra:{} to {}"
                    .format(channel, ii, start, end))
                num_pixels = len(waves[channel])

                # Write frame file
                framefileName = desispec.io.findfile("frame", NIGHT, EXPID,
                                                     camera)

                frame_flux=nobj[start:end,armName[channel],:num_pixels]+ \
                nsky[start:end,armName[channel],:num_pixels] + \
                frame_rand_noise[start:end,armName[channel],:num_pixels]
                frame_ivar = nivar[start:end, armName[channel], :num_pixels]

                sh1 = frame_flux.shape[
                    0]  # required for slicing the resolution metric, resolusion matrix has (nspec,ndiag,wave)
                # for example if nstart =400, nspec=150: two spectrographs:
                # 400-499=> 0 spectrograph, 500-549 => 1
                if (args.nstart == start):
                    resol = resolution[channel][:sh1, :, :]
                else:
                    resol = resolution[channel][-sh1:, :, :]

                # must create desispec.Frame object
                frame=Frame(waves[channel], frame_flux, frame_ivar,\
                    resolution_data=resol, spectrograph=ii, \
                    fibermap=fibermap[start:end], \
                    meta=dict(CAMERA=camera, FLAVOR=simspec.flavor) )
                desispec.io.write_frame(framefileName, frame)

                framefilePath = desispec.io.findfile("frame", NIGHT, EXPID,
                                                     camera)
                log.info("Wrote file {}".format(framefilePath))

                if args.frameonly or simspec.flavor == 'arc':
                    continue

                # Write cframe file
                cframeFileName = desispec.io.findfile("cframe", NIGHT, EXPID,
                                                      camera)
                cframeFlux = cframe_observedflux[
                    start:end,
                    armName[channel], :num_pixels] + cframe_rand_noise[
                        start:end, armName[channel], :num_pixels]
                cframeIvar = cframe_ivar[start:end,
                                         armName[channel], :num_pixels]

                # must create desispec.Frame object
                cframe = Frame(waves[channel], cframeFlux, cframeIvar, \
                    resolution_data=resol, spectrograph=ii,
                    fibermap=fibermap[start:end],
                    meta=dict(CAMERA=camera, FLAVOR=simspec.flavor) )
                desispec.io.frame.write_frame(cframeFileName, cframe)

                cframefilePath = desispec.io.findfile("cframe", NIGHT, EXPID,
                                                      camera)
                log.info("Wrote file {}".format(cframefilePath))

                # Write sky file
                skyfileName = desispec.io.findfile("sky", NIGHT, EXPID, camera)
                skyflux=nsky[start:end,armName[channel],:num_pixels] + \
                sky_rand_noise[start:end,armName[channel],:num_pixels]
                skyivar = sky_ivar[start:end, armName[channel], :num_pixels]
                skymask = np.zeros(skyflux.shape, dtype=np.uint32)

                # must create desispec.Sky object
                skymodel = SkyModel(waves[channel],
                                    skyflux,
                                    skyivar,
                                    skymask,
                                    header=dict(CAMERA=camera))
                desispec.io.sky.write_sky(skyfileName, skymodel)

                skyfilePath = desispec.io.findfile("sky", NIGHT, EXPID, camera)
                log.info("Wrote file {}".format(skyfilePath))

                # Write calib file
                calibVectorFile = desispec.io.findfile("calib", NIGHT, EXPID,
                                                       camera)
                flux = cframe_observedflux[start:end,
                                           armName[channel], :num_pixels]
                phot = nobj[start:end, armName[channel], :num_pixels]
                calibration = np.zeros_like(phot)
                jj = (flux > 0)
                calibration[jj] = phot[jj] / flux[jj]

                #- TODO: what should calibivar be?
                #- For now, model it as the noise of combining ~10 spectra
                calibivar = 10 / cframe_ivar[start:end,
                                             armName[channel], :num_pixels]
                #mask=(1/calibivar>0).astype(int)??
                mask = np.zeros(calibration.shape, dtype=np.uint32)

                # write flux calibration
                fluxcalib = FluxCalib(waves[channel], calibration, calibivar,
                                      mask)
                write_flux_calibration(calibVectorFile, fluxcalib)

                calibfilePath = desispec.io.findfile("calib", NIGHT, EXPID,
                                                     camera)
                log.info("Wrote file {}".format(calibfilePath))
Ejemplo n.º 30
0
def compute_polynomial_times_sky(frame, nsig_clipping=4.,max_iterations=30,model_ivar=False,add_variance=True,angular_variation_deg=1,chromatic_variation_deg=1) :
    """Compute a sky model.
    
    Sky[fiber,i] = R[fiber,i,j] Polynomial(x[fiber],y[fiber],wavelength[j]) Flux[j]
    
    Input flux are expected to be flatfielded!
    We don't check this in this routine.

    Args:
        frame : Frame object, which includes attributes
          - wave : 1D wavelength grid in Angstroms
          - flux : 2D flux[nspec, nwave] density
          - ivar : 2D inverse variance of flux
          - mask : 2D inverse mask flux (0=good)
          - resolution_data : 3D[nspec, ndiag, nwave]  (only sky fibers)
        nsig_clipping : [optional] sigma clipping value for outlier rejection

    Optional:
        max_iterations : int , number of iterations
        model_ivar : replace ivar by a model to avoid bias due to correlated flux and ivar. this has a negligible effect on sims.
        add_variance : evaluate calibration error and add this to the sky model variance
        
    returns SkyModel object with attributes wave, flux, ivar, mask
    """

    log=get_logger()
    log.info("starting")
    
    # Grab sky fibers on this frame
    skyfibers = np.where(frame.fibermap['OBJTYPE'] == 'SKY')[0]
    assert np.max(skyfibers) < 500  #- indices, not fiber numbers
    
    nwave=frame.nwave
    nfibers=len(skyfibers)

    current_ivar=frame.ivar[skyfibers].copy()*(frame.mask[skyfibers]==0)
    flux = frame.flux[skyfibers]
    Rsky = frame.R[skyfibers]
    

    input_ivar=None 
    if model_ivar :
        log.info("use a model of the inverse variance to remove bias due to correlated ivar and flux")
        input_ivar=current_ivar.copy()
        median_ivar_vs_wave  = np.median(current_ivar,axis=0)
        median_ivar_vs_fiber = np.median(current_ivar,axis=1)
        median_median_ivar   = np.median(median_ivar_vs_fiber)
        for f in range(current_ivar.shape[0]) :
            threshold=0.01
            current_ivar[f] = median_ivar_vs_fiber[f]/median_median_ivar * median_ivar_vs_wave
            # keep input ivar for very low weights
            ii=(input_ivar[f]<=(threshold*median_ivar_vs_wave))
            #log.info("fiber {} keep {}/{} original ivars".format(f,np.sum(ii),current_ivar.shape[1]))
            current_ivar[f][ii] = input_ivar[f][ii]
    
    # need focal plane coordinates
    x = frame.fibermap["DESIGN_X"]
    y = frame.fibermap["DESIGN_Y"]
    
    # normalize for numerical stability
    xm = np.mean(x)
    ym = np.mean(y)
    xs = np.std(x)
    ys = np.std(y)
    if xs==0 : xs = 1
    if ys==0 : ys = 1
    x = (x-xm)/xs
    y = (y-ym)/ys
    w = (frame.wave-frame.wave[0])/(frame.wave[-1]-frame.wave[0])*2.-1
    
    # precompute the monomials for the sky fibers
    log.debug("compute monomials for deg={} and {}".format(angular_variation_deg,chromatic_variation_deg))
    monomials=[]
    for dx in range(angular_variation_deg+1) :
        for dy in range(angular_variation_deg+1-dx) :
            xypol = (x**dx)*(y**dy)
            for dw in range(chromatic_variation_deg+1) :
                wpol=w**dw
                monomials.append(np.outer(xypol,wpol))
                
    ncoef=len(monomials)
    coef=np.zeros((ncoef))
    
    allfibers_monomials=np.array(monomials)
    log.debug("shape of allfibers_monomials = {}".format(allfibers_monomials.shape))
    
    skyfibers_monomials = allfibers_monomials[:,skyfibers,:]
    log.debug("shape of skyfibers_monomials = {}".format(skyfibers_monomials.shape))
    
    
    sqrtw=np.sqrt(current_ivar)
    sqrtwflux=sqrtw*flux

    chi2=np.zeros(flux.shape)

    Pol     = np.ones(flux.shape,dtype=float)
    coef[0] = 1.
    
    nout_tot=0
    previous_chi2=-10.
    for iteration in range(max_iterations) :
        
        # the matrix A is 1/2 of the second derivative of the chi2 with respect to the parameters
        # A_ij = 1/2 d2(chi2)/di/dj
        # A_ij = sum_fiber sum_wave_w ivar[fiber,w] d(model)/di[fiber,w] * d(model)/dj[fiber,w]
        
        # the vector B is 1/2 of the first derivative of the chi2 with respect to the parameters
        # B_i  = 1/2 d(chi2)/di
        # B_i  = sum_fiber sum_wave_w ivar[fiber,w] d(model)/di[fiber,w] * (flux[fiber,w]-model[fiber,w])
        
        # the model is model[fiber]=R[fiber]*Pol(x,y,wave)*sky
        # the parameters are the unconvolved sky flux at the wavelength i
        # and the polynomial coefficients
        
        A=np.zeros((nwave,nwave),dtype=float)
        B=np.zeros((nwave),dtype=float)
        D=scipy.sparse.lil_matrix((nwave,nwave))
        D2=scipy.sparse.lil_matrix((nwave,nwave))
        
        Pol /= coef[0] # force constant term to 1.
        
        # solving for the deconvolved mean sky spectrum
        # loop on fiber to handle resolution
        for fiber in range(nfibers) :
            if fiber%10==0 :
                log.info("iter %d sky fiber (1st fit) %d/%d"%(iteration,fiber,nfibers))
            D.setdiag(sqrtw[fiber])
            D2.setdiag(Pol[fiber])
            sqrtwRP = D.dot(Rsky[fiber]).dot(D2) # each row r of R is multiplied by sqrtw[r]
            A += (sqrtwRP.T*sqrtwRP).todense()
            B += sqrtwRP.T*sqrtwflux[fiber]
        
        log.info("iter %d solving"%iteration)
        w = A.diagonal()>0
        A_pos_def = A[w,:]
        A_pos_def = A_pos_def[:,w]
        parameters = B*0
        try:
            parameters[w]=cholesky_solve(A_pos_def,B[w])
        except:
            log.info("cholesky failed, trying svd in iteration {}".format(iteration))
            parameters[w]=np.linalg.lstsq(A_pos_def,B[w])[0]
        # parameters = the deconvolved mean sky spectrum
        
        # now evaluate the polynomial coefficients
        Ap=np.zeros((ncoef,ncoef),dtype=float)
        Bp=np.zeros((ncoef),dtype=float)
        D2.setdiag(parameters)
        for fiber in range(nfibers) :
            if fiber%10==0 :
                log.info("iter %d sky fiber  (2nd fit) %d/%d"%(iteration,fiber,nfibers))
            D.setdiag(sqrtw[fiber])
            sqrtwRSM = D.dot(Rsky[fiber]).dot(D2).dot(skyfibers_monomials[:,fiber,:].T)
            Ap += sqrtwRSM.T.dot(sqrtwRSM)
            Bp += sqrtwRSM.T.dot(sqrtwflux[fiber])
        
        # Add huge prior on zeroth angular order terms to converge faster
        # (because those terms are degenerate with the mean deconvolved spectrum)    
        weight=1e24
        Ap[0,0] += weight
        Bp[0]   += weight # force 0th term to 1
        for i in range(1,chromatic_variation_deg+1) :
            Ap[i,i] += weight # force other wavelength terms to 0
        

        coef=cholesky_solve(Ap,Bp)
        log.info("pol coef = {}".format(coef))
        
        # recompute the polynomial values
        Pol = skyfibers_monomials.T.dot(coef).T
        
        # chi2 and outlier rejection
        log.info("iter %d compute chi2"%iteration)
        for fiber in range(nfibers) :
            chi2[fiber]=current_ivar[fiber]*(flux[fiber]-Rsky[fiber].dot(Pol[fiber]*parameters))**2
        
        log.info("rejecting")

        nout_iter=0
        if iteration<1 :
            # only remove worst outlier per wave
            # apply rejection iteratively, only one entry per wave among fibers
            # find waves with outlier (fastest way)
            nout_per_wave=np.sum(chi2>nsig_clipping**2,axis=0)
            selection=np.where(nout_per_wave>0)[0]
            for i in selection :
                worst_entry=np.argmax(chi2[:,i])
                current_ivar[worst_entry,i]=0
                sqrtw[worst_entry,i]=0
                sqrtwflux[worst_entry,i]=0
                nout_iter += 1

        else :
            # remove all of them at once
            bad=(chi2>nsig_clipping**2)
            current_ivar *= (bad==0)
            sqrtw *= (bad==0)
            sqrtwflux *= (bad==0)
            nout_iter += np.sum(bad)

        nout_tot += nout_iter

        sum_chi2=float(np.sum(chi2))
        ndf=int(np.sum(chi2>0)-nwave)
        chi2pdf=0.
        if ndf>0 :
            chi2pdf=sum_chi2/ndf
        
        log.info("iter #%d chi2=%g ndf=%d chi2pdf=%f delta=%f nout=%d"%(iteration,sum_chi2,ndf,chi2pdf,abs(sum_chi2-previous_chi2),nout_iter))

        if nout_iter == 0 and abs(sum_chi2-previous_chi2)<0.2 :
            break
        previous_chi2 = sum_chi2+0.
        

    log.info("nout tot=%d"%nout_tot)
    
    # we know have to compute the sky model for all fibers
    # and propagate the uncertainties

    # no need to restore the original ivar to compute the model errors when modeling ivar
    # the sky inverse variances are very similar
    
    # we ignore here the fact that we have fit a angular variation,
    # so the sky model uncertainties are inaccurate
    
    log.info("compute the parameter covariance")
    try :
        parameter_covar=cholesky_invert(A)
    except np.linalg.linalg.LinAlgError :
        log.warning("cholesky_solve_and_invert failed, switching to np.linalg.lstsq and np.linalg.pinv")
        parameter_covar = np.linalg.pinv(A)
    
    log.info("compute mean resolution")
    # we make an approximation for the variance to save CPU time
    # we use the average resolution of all fibers in the frame:
    mean_res_data=np.mean(frame.resolution_data,axis=0)
    Rmean = Resolution(mean_res_data)
    
    log.info("compute convolved sky and ivar")
    
    # The parameters are directly the unconvolved sky
    # First convolve with average resolution :
    convolved_sky_covar=Rmean.dot(parameter_covar).dot(Rmean.T.todense())
        
    # and keep only the diagonal
    convolved_sky_var=np.diagonal(convolved_sky_covar)
        
    # inverse
    convolved_sky_ivar=(convolved_sky_var>0)/(convolved_sky_var+(convolved_sky_var==0))
    
    # and simply consider it's the same for all spectra
    cskyivar = np.tile(convolved_sky_ivar, frame.nspec).reshape(frame.nspec, nwave)

    # The sky model for each fiber (simple convolution with resolution of each fiber)
    cskyflux = np.zeros(frame.flux.shape)
    
    Pol = allfibers_monomials.T.dot(coef).T
    for fiber in range(frame.nspec):
        cskyflux[fiber] = frame.R[fiber].dot(Pol[fiber]*parameters)
        
    # look at chi2 per wavelength and increase sky variance to reach chi2/ndf=1
    if skyfibers.size > 1 and add_variance :
        modified_cskyivar = _model_variance(frame,cskyflux,cskyivar,skyfibers)
    else :
        modified_cskyivar = cskyivar.copy()
    
    # need to do better here
    mask = (cskyivar==0).astype(np.uint32)
    
    return SkyModel(frame.wave.copy(), cskyflux, modified_cskyivar, mask,
                    nrej=nout_tot, stat_ivar = cskyivar) # keep a record of the statistical ivar for QA
Ejemplo n.º 31
0
def spectroperf_resample_spectrum_multiproc(shm_in_wave, shm_in_flux,
                                            shm_in_ivar, shm_in_rdata,
                                            in_nwave, in_ndiag, in_bands,
                                            target_indices, wave, wavebin,
                                            resampling_matrix, ndiag, ntarget,
                                            shm_flux, shm_ivar, shm_rdata):

    nwave = wave.size

    # manipulate shared memory as np arrays

    # input shared memory
    in_wave = list()
    in_flux = list()
    in_ivar = list()
    in_rdata = list()

    nbands = len(shm_in_wave)
    for b in range(nbands):
        in_wave.append(
            np.array(shm_in_wave[b], copy=False).reshape(in_nwave[b]))
        in_flux.append(
            np.array(shm_in_flux[b], copy=False).reshape(
                (ntarget, in_nwave[b])))
        in_ivar.append(
            np.array(shm_in_ivar[b], copy=False).reshape(
                (ntarget, in_nwave[b])))
        in_rdata.append(
            np.array(shm_in_rdata[b], copy=False).reshape(
                (ntarget, in_ndiag[b], in_nwave[b])))

    # output shared memory

    flux = np.array(shm_flux, copy=False).reshape(ntarget, nwave)
    ivar = np.array(shm_ivar, copy=False).reshape(ntarget, nwave)
    rdata = np.array(shm_rdata, copy=False).reshape(ntarget, ndiag, nwave)

    for target_index in target_indices:

        cinv = None
        for b in range(nbands):
            twave = in_wave[b]
            jj = (twave >= wave[0]) & (twave <= wave[-1])
            twave = twave[jj]
            tivar = in_ivar[b][target_index][jj]
            diag_ivar = scipy.sparse.dia_matrix((tivar, [0]),
                                                (twave.size, twave.size))
            RR = Resolution(in_rdata[b][target_index][:, jj]).dot(
                resampling_matrix[in_bands[b]])
            tcinv = RR.T.dot(diag_ivar.dot(RR))
            tcinvf = RR.T.dot(tivar * in_flux[b][target_index][jj])
            if cinv is None:
                cinv = tcinv
                cinvf = tcinvf
            else:
                cinv += tcinv
                cinvf += tcinvf
        cinv = cinv.todense()
        decorrelate_divide_and_conquer(cinv, cinvf, wavebin,
                                       flux[target_index], ivar[target_index],
                                       rdata[target_index])
Ejemplo n.º 32
0
def compute_uniform_sky(frame, nsig_clipping=4.,max_iterations=100,model_ivar=False,add_variance=True) :
    """Compute a sky model.
    
    Sky[fiber,i] = R[fiber,i,j] Flux[j]
    
    Input flux are expected to be flatfielded!
    We don't check this in this routine.

    Args:
        frame : Frame object, which includes attributes
          - wave : 1D wavelength grid in Angstroms
          - flux : 2D flux[nspec, nwave] density
          - ivar : 2D inverse variance of flux
          - mask : 2D inverse mask flux (0=good)
          - resolution_data : 3D[nspec, ndiag, nwave]  (only sky fibers)
        nsig_clipping : [optional] sigma clipping value for outlier rejection

    Optional:
        max_iterations : int , number of iterations
        model_ivar : replace ivar by a model to avoid bias due to correlated flux and ivar. this has a negligible effect on sims.
        add_variance : evaluate calibration error and add this to the sky model variance
        
    returns SkyModel object with attributes wave, flux, ivar, mask
    """

    log=get_logger()
    log.info("starting")

    # Grab sky fibers on this frame
    skyfibers = np.where(frame.fibermap['OBJTYPE'] == 'SKY')[0]
    assert np.max(skyfibers) < 500  #- indices, not fiber numbers

    nwave=frame.nwave
    nfibers=len(skyfibers)

    current_ivar=frame.ivar[skyfibers].copy()*(frame.mask[skyfibers]==0)
    flux = frame.flux[skyfibers]
    Rsky = frame.R[skyfibers]
    
    input_ivar=None 
    if model_ivar :
        log.info("use a model of the inverse variance to remove bias due to correlated ivar and flux")
        input_ivar=current_ivar.copy()
        median_ivar_vs_wave  = np.median(current_ivar,axis=0)
        median_ivar_vs_fiber = np.median(current_ivar,axis=1)
        median_median_ivar   = np.median(median_ivar_vs_fiber)
        for f in range(current_ivar.shape[0]) :
            threshold=0.01
            current_ivar[f] = median_ivar_vs_fiber[f]/median_median_ivar * median_ivar_vs_wave
            # keep input ivar for very low weights
            ii=(input_ivar[f]<=(threshold*median_ivar_vs_wave))
            #log.info("fiber {} keep {}/{} original ivars".format(f,np.sum(ii),current_ivar.shape[1]))
            current_ivar[f][ii] = input_ivar[f][ii]
    

    sqrtw=np.sqrt(current_ivar)
    sqrtwflux=sqrtw*flux

    chi2=np.zeros(flux.shape)

    
    
    
    nout_tot=0
    for iteration in range(max_iterations) :
        
        # the matrix A is 1/2 of the second derivative of the chi2 with respect to the parameters
        # A_ij = 1/2 d2(chi2)/di/dj
        # A_ij = sum_fiber sum_wave_w ivar[fiber,w] d(model)/di[fiber,w] * d(model)/dj[fiber,w]
        
        # the vector B is 1/2 of the first derivative of the chi2 with respect to the parameters
        # B_i  = 1/2 d(chi2)/di
        # B_i  = sum_fiber sum_wave_w ivar[fiber,w] d(model)/di[fiber,w] * (flux[fiber,w]-model[fiber,w])
        
        # the model is model[fiber]=R[fiber]*sky
        # and the parameters are the unconvolved sky flux at the wavelength i
        
        # so, d(model)/di[fiber,w] = R[fiber][w,i]
        # this gives
        # A_ij = sum_fiber  sum_wave_w ivar[fiber,w] R[fiber][w,i] R[fiber][w,j]
        # A = sum_fiber ( diag(sqrt(ivar))*R[fiber] ) ( diag(sqrt(ivar))* R[fiber] )^t
        # A = sum_fiber sqrtwR[fiber] sqrtwR[fiber]^t
        # and 
        # B = sum_fiber sum_wave_w ivar[fiber,w] R[fiber][w] * flux[fiber,w]
        # B = sum_fiber sum_wave_w sqrt(ivar)[fiber,w]*flux[fiber,w] sqrtwR[fiber,wave]
        
        #A=scipy.sparse.lil_matrix((nwave,nwave)).tocsr()
        A=np.zeros((nwave,nwave))
        B=np.zeros((nwave))
        
        # diagonal sparse matrix with content = sqrt(ivar)*flat of a given fiber
        SD=scipy.sparse.lil_matrix((nwave,nwave))
        
        # loop on fiber to handle resolution
        for fiber in range(nfibers) :
            if fiber%10==0 :
                log.info("iter %d sky fiber %d/%d"%(iteration,fiber,nfibers))
            R = Rsky[fiber]

            # diagonal sparse matrix with content = sqrt(ivar)
            SD.setdiag(sqrtw[fiber])

            sqrtwR = SD*R # each row r of R is multiplied by sqrtw[r]
            A += (sqrtwR.T*sqrtwR).todense()
            B += sqrtwR.T*sqrtwflux[fiber]
                        
        log.info("iter %d solving"%iteration)
        w = A.diagonal()>0
        A_pos_def = A[w,:]
        A_pos_def = A_pos_def[:,w]
        parameters = B*0
        try:
            parameters[w]=cholesky_solve(A_pos_def,B[w])
        except:
            log.info("cholesky failed, trying svd in iteration {}".format(iteration))
            parameters[w]=np.linalg.lstsq(A_pos_def,B[w])[0]
        
        log.info("iter %d compute chi2"%iteration)

        for fiber in range(nfibers) :
            # the parameters are directly the unconvolve sky flux
            # so we simply have to reconvolve it
            fiber_convolved_sky_flux = Rsky[fiber].dot(parameters)
            chi2[fiber]=current_ivar[fiber]*(flux[fiber]-fiber_convolved_sky_flux)**2
            
        log.info("rejecting")

        nout_iter=0
        if iteration<1 :
            # only remove worst outlier per wave
            # apply rejection iteratively, only one entry per wave among fibers
            # find waves with outlier (fastest way)
            nout_per_wave=np.sum(chi2>nsig_clipping**2,axis=0)
            selection=np.where(nout_per_wave>0)[0]
            for i in selection :
                worst_entry=np.argmax(chi2[:,i])
                current_ivar[worst_entry,i]=0
                sqrtw[worst_entry,i]=0
                sqrtwflux[worst_entry,i]=0
                nout_iter += 1

        else :
            # remove all of them at once
            bad=(chi2>nsig_clipping**2)
            current_ivar *= (bad==0)
            sqrtw *= (bad==0)
            sqrtwflux *= (bad==0)
            nout_iter += np.sum(bad)

        nout_tot += nout_iter

        sum_chi2=float(np.sum(chi2))
        ndf=int(np.sum(chi2>0)-nwave)
        chi2pdf=0.
        if ndf>0 :
            chi2pdf=sum_chi2/ndf
        log.info("iter #%d chi2=%f ndf=%d chi2pdf=%f nout=%d"%(iteration,sum_chi2,ndf,chi2pdf,nout_iter))

        if nout_iter == 0 :
            break

    log.info("nout tot=%d"%nout_tot)


    # we know have to compute the sky model for all fibers
    # and propagate the uncertainties

    # no need to restore the original ivar to compute the model errors when modeling ivar
    # the sky inverse variances are very similar
    
    log.info("compute the parameter covariance")
    # we may have to use a different method to compute this
    # covariance
   
    try :
        parameter_covar=cholesky_invert(A)
        # the above is too slow
        # maybe invert per block, sandwich by R 
    except np.linalg.linalg.LinAlgError :
        log.warning("cholesky_solve_and_invert failed, switching to np.linalg.lstsq and np.linalg.pinv")
        parameter_covar = np.linalg.pinv(A)
    
    log.info("compute mean resolution")
    # we make an approximation for the variance to save CPU time
    # we use the average resolution of all fibers in the frame:
    mean_res_data=np.mean(frame.resolution_data,axis=0)
    Rmean = Resolution(mean_res_data)
    
    log.info("compute convolved sky and ivar")
    
    # The parameters are directly the unconvolved sky
    # First convolve with average resolution :
    convolved_sky_covar=Rmean.dot(parameter_covar).dot(Rmean.T.todense())
        
    # and keep only the diagonal
    convolved_sky_var=np.diagonal(convolved_sky_covar)
        
    # inverse
    convolved_sky_ivar=(convolved_sky_var>0)/(convolved_sky_var+(convolved_sky_var==0))
    
    # and simply consider it's the same for all spectra
    cskyivar = np.tile(convolved_sky_ivar, frame.nspec).reshape(frame.nspec, nwave)

    # The sky model for each fiber (simple convolution with resolution of each fiber)
    cskyflux = np.zeros(frame.flux.shape)
    for i in range(frame.nspec):
        cskyflux[i] = frame.R[i].dot(parameters)
        
    # look at chi2 per wavelength and increase sky variance to reach chi2/ndf=1
    if skyfibers.size > 1 and add_variance :
        modified_cskyivar = _model_variance(frame,cskyflux,cskyivar,skyfibers)
    else :
        modified_cskyivar = cskyivar.copy()
    
    # need to do better here
    mask = (cskyivar==0).astype(np.uint32)
    
    return SkyModel(frame.wave.copy(), cskyflux, modified_cskyivar, mask,
                    nrej=nout_tot, stat_ivar = cskyivar) # keep a record of the statistical ivar for QA
Ejemplo n.º 33
0
def compute_sky(frame, nsig_clipping=4.) :
    """Compute a sky model.

    Input has to correspond to sky fibers only.
    Input flux are expected to be flatfielded!
    We don't check this in this routine.

    Args:
        frame : Frame object, which includes attributes
          - wave : 1D wavelength grid in Angstroms
          - flux : 2D flux[nspec, nwave] density
          - ivar : 2D inverse variance of flux
          - mask : 2D inverse mask flux (0=good)
          - resolution_data : 3D[nspec, ndiag, nwave]  (only sky fibers)
        nsig_clipping : [optional] sigma clipping value for outlier rejection

    returns SkyModel object with attributes wave, flux, ivar, mask
    """

    log=get_logger()
    log.info("starting")

    # Grab sky fibers on this frame
    skyfibers = np.where(frame.fibermap['OBJTYPE'] == 'SKY')[0]
    assert np.max(skyfibers) < 500  #- indices, not fiber numbers

    nwave=frame.nwave
    nfibers=len(skyfibers)

    current_ivar=frame.ivar[skyfibers].copy()
    flux = frame.flux[skyfibers]
    Rsky = frame.R[skyfibers]

    sqrtw=np.sqrt(current_ivar)
    sqrtwflux=sqrtw*flux

    chi2=np.zeros(flux.shape)

    #debug
    #nfibers=min(nfibers,2)

    nout_tot=0
    for iteration in range(20) :

        A=scipy.sparse.lil_matrix((nwave,nwave)).tocsr()
        B=np.zeros((nwave))
        # diagonal sparse matrix with content = sqrt(ivar)*flat of a given fiber
        SD=scipy.sparse.lil_matrix((nwave,nwave))
        # loop on fiber to handle resolution
        for fiber in range(nfibers) :
            if fiber%10==0 :
                log.info("iter %d fiber %d"%(iteration,fiber))
            R = Rsky[fiber]

            # diagonal sparse matrix with content = sqrt(ivar)
            SD.setdiag(sqrtw[fiber])

            sqrtwR = SD*R # each row r of R is multiplied by sqrtw[r]

            A = A+(sqrtwR.T*sqrtwR).tocsr()
            B += sqrtwR.T*sqrtwflux[fiber]

        log.info("iter %d solving"%iteration)

        skyflux=cholesky_solve(A.todense(),B)

        log.info("iter %d compute chi2"%iteration)

        for fiber in range(nfibers) :

            S = Rsky[fiber].dot(skyflux)
            chi2[fiber]=current_ivar[fiber]*(flux[fiber]-S)**2

        log.info("rejecting")

        nout_iter=0
        if iteration<1 :
            # only remove worst outlier per wave
            # apply rejection iteratively, only one entry per wave among fibers
            # find waves with outlier (fastest way)
            nout_per_wave=np.sum(chi2>nsig_clipping**2,axis=0)
            selection=np.where(nout_per_wave>0)[0]
            for i in selection :
                worst_entry=np.argmax(chi2[:,i])
                current_ivar[worst_entry,i]=0
                sqrtw[worst_entry,i]=0
                sqrtwflux[worst_entry,i]=0
                nout_iter += 1

        else :
            # remove all of them at once
            bad=(chi2>nsig_clipping**2)
            current_ivar *= (bad==0)
            sqrtw *= (bad==0)
            sqrtwflux *= (bad==0)
            nout_iter += np.sum(bad)

        nout_tot += nout_iter

        sum_chi2=float(np.sum(chi2))
        ndf=int(np.sum(chi2>0)-nwave)
        chi2pdf=0.
        if ndf>0 :
            chi2pdf=sum_chi2/ndf
        log.info("iter #%d chi2=%f ndf=%d chi2pdf=%f nout=%d"%(iteration,sum_chi2,ndf,chi2pdf,nout_iter))

        if nout_iter == 0 :
            break

    log.info("nout tot=%d"%nout_tot)


    # solve once again to get deconvolved sky variance
    skyflux,skycovar=cholesky_solve_and_invert(A.todense(),B)

    #- sky inverse variance, but incomplete and not needed anyway
    # skyvar=np.diagonal(skycovar)
    # skyivar=(skyvar>0)/(skyvar+(skyvar==0))

    # Use diagonal of skycovar convolved with mean resolution of all fibers
    # first compute average resolution
    mean_res_data=np.mean(frame.resolution_data,axis=0)
    R = Resolution(mean_res_data)
    # compute convolved sky and ivar
    cskycovar=R.dot(skycovar).dot(R.T.todense())
    cskyvar=np.diagonal(cskycovar)
    cskyivar=(cskyvar>0)/(cskyvar+(cskyvar==0))

    # convert cskyivar to 2D; today it is the same for all spectra,
    # but that may not be the case in the future
    cskyivar = np.tile(cskyivar, frame.nspec).reshape(frame.nspec, nwave)

    # Convolved sky
    cskyflux = np.zeros(frame.flux.shape)
    for i in range(frame.nspec):
        cskyflux[i] = frame.R[i].dot(skyflux)

    # need to do better here
    mask = (cskyivar==0).astype(np.uint32)

    return SkyModel(frame.wave.copy(), cskyflux, cskyivar, mask,
                    nrej=nout_tot)
Ejemplo n.º 34
0
def compute_non_uniform_sky(frame, nsig_clipping=4.,max_iterations=10,model_ivar=False,add_variance=True,angular_variation_deg=1) :
    """Compute a sky model.
    
    Sky[fiber,i] = R[fiber,i,j] ( Flux_0[j] + x[fiber]*Flux_x[j] + y[fiber]*Flux_y[j] + ... )
    
    Input flux are expected to be flatfielded!
    We don't check this in this routine.

    Args:
        frame : Frame object, which includes attributes
          - wave : 1D wavelength grid in Angstroms
          - flux : 2D flux[nspec, nwave] density
          - ivar : 2D inverse variance of flux
          - mask : 2D inverse mask flux (0=good)
          - resolution_data : 3D[nspec, ndiag, nwave]  (only sky fibers)
        nsig_clipping : [optional] sigma clipping value for outlier rejection

    Optional:
        max_iterations : int , number of iterations
        model_ivar : replace ivar by a model to avoid bias due to correlated flux and ivar. this has a negligible effect on sims.
        add_variance : evaluate calibration error and add this to the sky model variance
        angular_variation_deg  : degree of 2D polynomial correction as a function of fiber focal plane coordinates (default=1). One set of coefficients per wavelength
    
    returns SkyModel object with attributes wave, flux, ivar, mask
    """

    log=get_logger()
    log.info("starting")

    # Grab sky fibers on this frame
    skyfibers = np.where(frame.fibermap['OBJTYPE'] == 'SKY')[0]
    assert np.max(skyfibers) < 500  #- indices, not fiber numbers

    nwave=frame.nwave
    nfibers=len(skyfibers)

    current_ivar=frame.ivar[skyfibers].copy()*(frame.mask[skyfibers]==0)
    flux = frame.flux[skyfibers]
    Rsky = frame.R[skyfibers]
    
    
    # need focal plane coordinates of fibers
    x = frame.fibermap["DESIGN_X"][skyfibers]
    y = frame.fibermap["DESIGN_Y"][skyfibers]
    # normalize for numerical stability
    xm = np.mean(frame.fibermap["DESIGN_X"])
    ym = np.mean(frame.fibermap["DESIGN_Y"])
    xs = np.std(frame.fibermap["DESIGN_X"])
    ys = np.std(frame.fibermap["DESIGN_Y"])
    if xs==0 : xs = 1
    if ys==0 : ys = 1
    x = (x-xm)/xs
    y = (y-ym)/ys

    # precompute the monomials for the sky fibers
    log.debug("compute monomials for deg={}".format(angular_variation_deg))
    monomials=[]
    for dx in range(angular_variation_deg+1) :
        for dy in range(angular_variation_deg+1-dx) :
            monomials.append((x**dx)*(y**dy))
    ncoef=len(monomials)
    monomials=np.array(monomials)
        
    
    input_ivar=None 
    if model_ivar :
        log.info("use a model of the inverse variance to remove bias due to correlated ivar and flux")
        input_ivar=current_ivar.copy()
        median_ivar_vs_wave  = np.median(current_ivar,axis=0)
        median_ivar_vs_fiber = np.median(current_ivar,axis=1)
        median_median_ivar   = np.median(median_ivar_vs_fiber)
        for f in range(current_ivar.shape[0]) :
            threshold=0.01
            current_ivar[f] = median_ivar_vs_fiber[f]/median_median_ivar * median_ivar_vs_wave
            # keep input ivar for very low weights
            ii=(input_ivar[f]<=(threshold*median_ivar_vs_wave))
            #log.info("fiber {} keep {}/{} original ivars".format(f,np.sum(ii),current_ivar.shape[1]))                      
            current_ivar[f][ii] = input_ivar[f][ii]
    

    sqrtw=np.sqrt(current_ivar)
    sqrtwflux=sqrtw*flux

    chi2=np.zeros(flux.shape)

    
    
    
    nout_tot=0
    for iteration in range(max_iterations) :

        # the matrix A is 1/2 of the second derivative of the chi2 with respect to the parameters
        # A_ij = 1/2 d2(chi2)/di/dj
        # A_ij = sum_fiber sum_wave_w ivar[fiber,w] d(model)/di[fiber,w] * d(model)/dj[fiber,w]
        
        # the vector B is 1/2 of the first derivative of the chi2 with respect to the parameters
        # B_i  = 1/2 d(chi2)/di
        # B_i  = sum_fiber sum_wave_w ivar[fiber,w] d(model)/di[fiber,w] * (flux[fiber,w]-model[fiber,w])
        
        # with x_fiber,y_fiber the fiber coordinates in the focal plane (or sky)
        # the unconvolved sky flux at wavelength i is a polynomial of x_fiber,y_fiber
        # sky(fiber,i) = pol(x_fiber,y_fiber,p) = sum_p a_ip * x_fiber**degx(p) y_fiber**degy(p)
        # sky(fiber,i) =  sum_p monom[fiber,p] *  a_ip
        # the convolved sky flux at wavelength w is 
        # model[fiber,w] = sum_i R[fiber][w,i] sum_p monom[fiber,p] *  a_ip
        # model[fiber,w] = sum_p monom[fiber,p] R[fiber][w,i] a_ip
        # 
        # so, the matrix A is composed of blocks (p,k) corresponding to polynomial coefficient indices where
        # A[pk] = sum_fiber monom[fiber,p]*monom[fiber,k] sqrtwR[fiber] sqrtwR[fiber]^t
        # similarily
        # B[p]  =  sum_fiber monom[fiber,p] * sum_wave_w (sqrt(ivar)[fiber,w]*flux[fiber,w]) sqrtwR[fiber,wave]
        
        A=np.zeros((nwave*ncoef,nwave*ncoef))
        B=np.zeros((nwave*ncoef))
        
        # diagonal sparse matrix with content = sqrt(ivar)*flat of a given fiber
        SD=scipy.sparse.lil_matrix((nwave,nwave))
        
        # loop on fiber to handle resolution
        for fiber in range(nfibers) :
            if fiber%10==0 :
                log.info("iter %d sky fiber %d/%d"%(iteration,fiber,nfibers))
            R = Rsky[fiber]

            # diagonal sparse matrix with content = sqrt(ivar)
            SD.setdiag(sqrtw[fiber])

            sqrtwR = SD*R # each row r of R is multiplied by sqrtw[r]

            #wRtR=(sqrtwR.T*sqrtwR).tocsr()
            wRtR=(sqrtwR.T*sqrtwR).todense()
            wRtF=sqrtwR.T*sqrtwflux[fiber]
            # loop on polynomial coefficients (double loop for A)
            # fill only blocks of A and B
            for p in range(ncoef) :
                for k in range(ncoef) :
                    A[p*nwave:(p+1)*nwave,k*nwave:(k+1)*nwave] += monomials[p,fiber]*monomials[k,fiber]*wRtR
                B[p*nwave:(p+1)*nwave] += monomials[p,fiber]*wRtF
                
        log.info("iter %d solving"%iteration)
        w = A.diagonal()>0
        A_pos_def = A[w,:]
        A_pos_def = A_pos_def[:,w]
        parameters = B*0
        try:
            parameters[w]=cholesky_solve(A_pos_def,B[w])
        except:
            log.info("cholesky failed, trying svd in iteration {}".format(iteration))
            parameters[w]=np.linalg.lstsq(A_pos_def,B[w])[0]
        
        log.info("iter %d compute chi2"%iteration)

        for fiber in range(nfibers) :
            # loop on polynomial indices
            unconvolved_fiber_sky_flux = np.zeros(nwave)
            for p in range(ncoef) :
                unconvolved_fiber_sky_flux += monomials[p,fiber]*parameters[p*nwave:(p+1)*nwave]
            # then convolve
            fiber_convolved_sky_flux = Rsky[fiber].dot(unconvolved_fiber_sky_flux)
            
            chi2[fiber]=current_ivar[fiber]*(flux[fiber]-fiber_convolved_sky_flux)**2
            
        log.info("rejecting")

        nout_iter=0
        if iteration<1 :
            # only remove worst outlier per wave
            # apply rejection iteratively, only one entry per wave among fibers
            # find waves with outlier (fastest way)
            nout_per_wave=np.sum(chi2>nsig_clipping**2,axis=0)
            selection=np.where(nout_per_wave>0)[0]
            for i in selection :
                worst_entry=np.argmax(chi2[:,i])
                current_ivar[worst_entry,i]=0
                sqrtw[worst_entry,i]=0
                sqrtwflux[worst_entry,i]=0
                nout_iter += 1

        else :
            # remove all of them at once
            bad=(chi2>nsig_clipping**2)
            current_ivar *= (bad==0)
            sqrtw *= (bad==0)
            sqrtwflux *= (bad==0)
            nout_iter += np.sum(bad)

        nout_tot += nout_iter

        sum_chi2=float(np.sum(chi2))
        ndf=int(np.sum(chi2>0)-nwave)
        chi2pdf=0.
        if ndf>0 :
            chi2pdf=sum_chi2/ndf
        log.info("iter #%d chi2=%f ndf=%d chi2pdf=%f nout=%d"%(iteration,sum_chi2,ndf,chi2pdf,nout_iter))

        if nout_iter == 0 :
            break

    log.info("nout tot=%d"%nout_tot)


    # we know have to compute the sky model for all fibers
    # and propagate the uncertainties

    # no need to restore the original ivar to compute the model errors when modeling ivar
    # the sky inverse variances are very similar
    
    # is there a different method to compute this ?
    log.info("compute covariance")
    try :
        parameter_covar=cholesky_invert(A)
    except np.linalg.linalg.LinAlgError :
        log.warning("cholesky_solve_and_invert failed, switching to np.linalg.lstsq and np.linalg.pinv")
        parameter_covar = np.linalg.pinv(A)
    
    log.info("compute mean resolution")
    # we make an approximation for the variance to save CPU time
    # we use the average resolution of all fibers in the frame:
    mean_res_data=np.mean(frame.resolution_data,axis=0)
    Rmean = Resolution(mean_res_data)
    
    log.info("compute convolved sky and ivar")
        
    cskyflux = np.zeros(frame.flux.shape)
    cskyivar = np.zeros(frame.flux.shape)

    log.info("compute convolved parameter covariance")
    # The covariance of the parameters is composed of ncoef*ncoef blocks each of size nwave*nwave
    # A block (p,k) is the covariance of the unconvolved spectra p and k , corresponding to the polynomial indices p and k
    # We first sandwich each block with the average resolution.
    convolved_parameter_covar=np.zeros((ncoef,ncoef,nwave))
    for p in range(ncoef) :
        for k in range(ncoef) :
            convolved_parameter_covar[p,k] = np.diagonal(Rmean.dot(parameter_covar[p*nwave:(p+1)*nwave,k*nwave:(k+1)*nwave]).dot(Rmean.T.todense()))
    
    '''
    import astropy.io.fits as pyfits
    pyfits.writeto("convolved_parameter_covar.fits",convolved_parameter_covar,overwrite=True)
    
    # other approach
    log.info("dense Rmean...")
    Rmean=Rmean.todense()
    log.info("invert Rinv...")
    Rinv=np.linalg.inv(Rmean)
    # check this
    print("0?",np.max(np.abs(Rinv.dot(Rmean)-np.eye(Rmean.shape[0])))/np.max(np.abs(Rmean)))
    convolved_parameter_ivar=np.zeros((ncoef,ncoef,nwave))
    for p in range(ncoef) :
        for k in range(ncoef) :
            convolved_parameter_ivar[p,k] = np.diagonal(Rinv.T.dot(A[p*nwave:(p+1)*nwave,k*nwave:(k+1)*nwave]).dot(Rinv))
    # solve for each wave separately
    convolved_parameter_covar=np.zeros((ncoef,ncoef,nwave))
    for i in range(nwave) :
        print("inverting ivar of wave %d/%d"%(i,nwave))
        convolved_parameter_covar[:,:,i] = cholesky_invert(convolved_parameter_ivar[:,:,i])
    pyfits.writeto("convolved_parameter_covar_bis.fits",convolved_parameter_covar,overwrite=True)
    import sys
    sys.exit(12)
    '''
    
    # Now we compute the sky model variance for each fiber individually
    # accounting for its focal plane coordinates
    # so that a target fiber distant for a sky fiber will naturally have a larger
    # sky model variance
    log.info("compute sky and variance per fiber")        
    for i in range(frame.nspec):
        # compute monomials
        M = []
        xi=(frame.fibermap["DESIGN_X"][i]-xm)/xs
        yi=(frame.fibermap["DESIGN_Y"][i]-ym)/ys
        for dx in range(angular_variation_deg+1) :
            for dy in range(angular_variation_deg+1-dx) :
                M.append((xi**dx)*(yi**dy))
        M = np.array(M)

        unconvolved_fiber_sky_flux=np.zeros(nwave)
        convolved_fiber_skyvar=np.zeros(nwave)
        for p in range(ncoef) :
            unconvolved_fiber_sky_flux += M[p]*parameters[p*nwave:(p+1)*nwave]
            for k in range(ncoef) :
                convolved_fiber_skyvar += M[p]*M[k]*convolved_parameter_covar[p,k]

        # convolve sky model with this fiber's resolution
        cskyflux[i] = frame.R[i].dot(unconvolved_fiber_sky_flux)

        # save inverse of variance
        cskyivar[i] = (convolved_fiber_skyvar>0)/(convolved_fiber_skyvar+(convolved_fiber_skyvar==0))

    
    # look at chi2 per wavelength and increase sky variance to reach chi2/ndf=1
    if skyfibers.size > 1 and add_variance :
        modified_cskyivar = _model_variance(frame,cskyflux,cskyivar,skyfibers)
    else :
        modified_cskyivar = cskyivar.copy()
    
    # need to do better here
    mask = (cskyivar==0).astype(np.uint32)
    
    return SkyModel(frame.wave.copy(), cskyflux, modified_cskyivar, mask,
                    nrej=nout_tot, stat_ivar = cskyivar) # keep a record of the statistical ivar for QA
Ejemplo n.º 35
0
    def test_resolution(self, n = 100):
        dense = np.arange(n*n).reshape(n,n)
        R1 = Resolution(dense)
        assert scipy.sparse.isspmatrix_dia(R1),'Resolution is not recognized as a scipy.sparse.dia_matrix.'
        assert len(R1.offsets) == desispec.resolution.default_ndiag, 'Resolution.offsets has wrong size'

        R2 = Resolution(R1)
        assert np.array_equal(R1.toarray(),R2.toarray()),'Constructor broken for dia_matrix input.'

        R3 = Resolution(R1.data)
        assert np.array_equal(R1.toarray(),R3.toarray()),'Constructor broken for array data input.'

        sparse = scipy.sparse.dia_matrix((R1.data[::-1],R1.offsets[::-1]),(n,n))
        R4 = Resolution(sparse)
        assert np.array_equal(R1.toarray(),R4.toarray()),'Constructor broken for permuted offsets input.'

        R5 = Resolution(R1.to_fits_array())
        assert np.array_equal(R1.toarray(),R5.toarray()),'to_fits_array() is broken.'

        #- test different sizes of input diagonals
        for ndiag in [3,5,11]:
            R6 = Resolution(np.ones((ndiag, n)))
            assert len(R6.offsets) == ndiag, 'Constructor broken for ndiag={}'.format(ndiag)

        #- An even number if diagonals is not allowed
        try:
            ndiag = 10
            R7 = Resolution(np.ones((ndiag, n)))
            raise RuntimeError('Incorrectly created Resolution with even number of diagonals')
        except ValueError, err:
            #- it correctly raised an error, so pass
            pass
Ejemplo n.º 36
0
def compute_polynomial_times_sky(frame,
                                 nsig_clipping=4.,
                                 max_iterations=30,
                                 model_ivar=False,
                                 add_variance=True,
                                 angular_variation_deg=1,
                                 chromatic_variation_deg=1):
    """Compute a sky model.
    
    Sky[fiber,i] = R[fiber,i,j] Polynomial(x[fiber],y[fiber],wavelength[j]) Flux[j]
    
    Input flux are expected to be flatfielded!
    We don't check this in this routine.

    Args:
        frame : Frame object, which includes attributes
          - wave : 1D wavelength grid in Angstroms
          - flux : 2D flux[nspec, nwave] density
          - ivar : 2D inverse variance of flux
          - mask : 2D inverse mask flux (0=good)
          - resolution_data : 3D[nspec, ndiag, nwave]  (only sky fibers)
        nsig_clipping : [optional] sigma clipping value for outlier rejection

    Optional:
        max_iterations : int , number of iterations
        model_ivar : replace ivar by a model to avoid bias due to correlated flux and ivar. this has a negligible effect on sims.
        add_variance : evaluate calibration error and add this to the sky model variance
        
    returns SkyModel object with attributes wave, flux, ivar, mask
    """

    log = get_logger()
    log.info("starting")

    # Grab sky fibers on this frame
    skyfibers = np.where(frame.fibermap['OBJTYPE'] == 'SKY')[0]
    assert np.max(skyfibers) < 500  #- indices, not fiber numbers

    nwave = frame.nwave
    nfibers = len(skyfibers)

    current_ivar = frame.ivar[skyfibers].copy() * (frame.mask[skyfibers] == 0)
    flux = frame.flux[skyfibers]
    Rsky = frame.R[skyfibers]

    input_ivar = None
    if model_ivar:
        log.info(
            "use a model of the inverse variance to remove bias due to correlated ivar and flux"
        )
        input_ivar = current_ivar.copy()
        median_ivar_vs_wave = np.median(current_ivar, axis=0)
        median_ivar_vs_fiber = np.median(current_ivar, axis=1)
        median_median_ivar = np.median(median_ivar_vs_fiber)
        for f in range(current_ivar.shape[0]):
            threshold = 0.01
            current_ivar[f] = median_ivar_vs_fiber[
                f] / median_median_ivar * median_ivar_vs_wave
            # keep input ivar for very low weights
            ii = (input_ivar[f] <= (threshold * median_ivar_vs_wave))
            #log.info("fiber {} keep {}/{} original ivars".format(f,np.sum(ii),current_ivar.shape[1]))
            current_ivar[f][ii] = input_ivar[f][ii]

    # need focal plane coordinates
    x = frame.fibermap["FIBERASSIGN_X"]
    y = frame.fibermap["FIBERASSIGN_Y"]

    # normalize for numerical stability
    xm = np.mean(x)
    ym = np.mean(y)
    xs = np.std(x)
    ys = np.std(y)
    if xs == 0: xs = 1
    if ys == 0: ys = 1
    x = (x - xm) / xs
    y = (y - ym) / ys
    w = (frame.wave - frame.wave[0]) / (frame.wave[-1] -
                                        frame.wave[0]) * 2. - 1

    # precompute the monomials for the sky fibers
    log.debug("compute monomials for deg={} and {}".format(
        angular_variation_deg, chromatic_variation_deg))
    monomials = []
    for dx in range(angular_variation_deg + 1):
        for dy in range(angular_variation_deg + 1 - dx):
            xypol = (x**dx) * (y**dy)
            for dw in range(chromatic_variation_deg + 1):
                wpol = w**dw
                monomials.append(np.outer(xypol, wpol))

    ncoef = len(monomials)
    coef = np.zeros((ncoef))

    allfibers_monomials = np.array(monomials)
    log.debug("shape of allfibers_monomials = {}".format(
        allfibers_monomials.shape))

    skyfibers_monomials = allfibers_monomials[:, skyfibers, :]
    log.debug("shape of skyfibers_monomials = {}".format(
        skyfibers_monomials.shape))

    sqrtw = np.sqrt(current_ivar)
    sqrtwflux = sqrtw * flux

    chi2 = np.zeros(flux.shape)

    Pol = np.ones(flux.shape, dtype=float)
    coef[0] = 1.

    nout_tot = 0
    previous_chi2 = -10.
    for iteration in range(max_iterations):

        # the matrix A is 1/2 of the second derivative of the chi2 with respect to the parameters
        # A_ij = 1/2 d2(chi2)/di/dj
        # A_ij = sum_fiber sum_wave_w ivar[fiber,w] d(model)/di[fiber,w] * d(model)/dj[fiber,w]

        # the vector B is 1/2 of the first derivative of the chi2 with respect to the parameters
        # B_i  = 1/2 d(chi2)/di
        # B_i  = sum_fiber sum_wave_w ivar[fiber,w] d(model)/di[fiber,w] * (flux[fiber,w]-model[fiber,w])

        # the model is model[fiber]=R[fiber]*Pol(x,y,wave)*sky
        # the parameters are the unconvolved sky flux at the wavelength i
        # and the polynomial coefficients

        A = np.zeros((nwave, nwave), dtype=float)
        B = np.zeros((nwave), dtype=float)
        D = scipy.sparse.lil_matrix((nwave, nwave))
        D2 = scipy.sparse.lil_matrix((nwave, nwave))

        Pol /= coef[0]  # force constant term to 1.

        # solving for the deconvolved mean sky spectrum
        # loop on fiber to handle resolution
        for fiber in range(nfibers):
            if fiber % 10 == 0:
                log.info("iter %d sky fiber (1st fit) %d/%d" %
                         (iteration, fiber, nfibers))
            D.setdiag(sqrtw[fiber])
            D2.setdiag(Pol[fiber])
            sqrtwRP = D.dot(Rsky[fiber]).dot(
                D2)  # each row r of R is multiplied by sqrtw[r]
            A += (sqrtwRP.T * sqrtwRP).todense()
            B += sqrtwRP.T * sqrtwflux[fiber]

        log.info("iter %d solving" % iteration)
        w = A.diagonal() > 0
        A_pos_def = A[w, :]
        A_pos_def = A_pos_def[:, w]
        parameters = B * 0
        try:
            parameters[w] = cholesky_solve(A_pos_def, B[w])
        except:
            log.info("cholesky failed, trying svd in iteration {}".format(
                iteration))
            parameters[w] = np.linalg.lstsq(A_pos_def, B[w])[0]
        # parameters = the deconvolved mean sky spectrum

        # now evaluate the polynomial coefficients
        Ap = np.zeros((ncoef, ncoef), dtype=float)
        Bp = np.zeros((ncoef), dtype=float)
        D2.setdiag(parameters)
        for fiber in range(nfibers):
            if fiber % 10 == 0:
                log.info("iter %d sky fiber  (2nd fit) %d/%d" %
                         (iteration, fiber, nfibers))
            D.setdiag(sqrtw[fiber])
            sqrtwRSM = D.dot(Rsky[fiber]).dot(D2).dot(
                skyfibers_monomials[:, fiber, :].T)
            Ap += sqrtwRSM.T.dot(sqrtwRSM)
            Bp += sqrtwRSM.T.dot(sqrtwflux[fiber])

        # Add huge prior on zeroth angular order terms to converge faster
        # (because those terms are degenerate with the mean deconvolved spectrum)
        weight = 1e24
        Ap[0, 0] += weight
        Bp[0] += weight  # force 0th term to 1
        for i in range(1, chromatic_variation_deg + 1):
            Ap[i, i] += weight  # force other wavelength terms to 0

        coef = cholesky_solve(Ap, Bp)
        log.info("pol coef = {}".format(coef))

        # recompute the polynomial values
        Pol = skyfibers_monomials.T.dot(coef).T

        # chi2 and outlier rejection
        log.info("iter %d compute chi2" % iteration)
        for fiber in range(nfibers):
            chi2[fiber] = current_ivar[fiber] * (
                flux[fiber] - Rsky[fiber].dot(Pol[fiber] * parameters))**2

        log.info("rejecting")

        nout_iter = 0
        if iteration < 1:
            # only remove worst outlier per wave
            # apply rejection iteratively, only one entry per wave among fibers
            # find waves with outlier (fastest way)
            nout_per_wave = np.sum(chi2 > nsig_clipping**2, axis=0)
            selection = np.where(nout_per_wave > 0)[0]
            for i in selection:
                worst_entry = np.argmax(chi2[:, i])
                current_ivar[worst_entry, i] = 0
                sqrtw[worst_entry, i] = 0
                sqrtwflux[worst_entry, i] = 0
                nout_iter += 1

        else:
            # remove all of them at once
            bad = (chi2 > nsig_clipping**2)
            current_ivar *= (bad == 0)
            sqrtw *= (bad == 0)
            sqrtwflux *= (bad == 0)
            nout_iter += np.sum(bad)

        nout_tot += nout_iter

        sum_chi2 = float(np.sum(chi2))
        ndf = int(np.sum(chi2 > 0) - nwave)
        chi2pdf = 0.
        if ndf > 0:
            chi2pdf = sum_chi2 / ndf

        log.info("iter #%d chi2=%g ndf=%d chi2pdf=%f delta=%f nout=%d" %
                 (iteration, sum_chi2, ndf, chi2pdf,
                  abs(sum_chi2 - previous_chi2), nout_iter))

        if nout_iter == 0 and abs(sum_chi2 - previous_chi2) < 0.2:
            break
        previous_chi2 = sum_chi2 + 0.

    log.info("nout tot=%d" % nout_tot)

    # we know have to compute the sky model for all fibers
    # and propagate the uncertainties

    # no need to restore the original ivar to compute the model errors when modeling ivar
    # the sky inverse variances are very similar

    # we ignore here the fact that we have fit a angular variation,
    # so the sky model uncertainties are inaccurate

    log.info("compute the parameter covariance")
    try:
        parameter_covar = cholesky_invert(A)
    except np.linalg.linalg.LinAlgError:
        log.warning(
            "cholesky_solve_and_invert failed, switching to np.linalg.lstsq and np.linalg.pinv"
        )
        parameter_covar = np.linalg.pinv(A)

    log.info("compute mean resolution")
    # we make an approximation for the variance to save CPU time
    # we use the average resolution of all fibers in the frame:
    mean_res_data = np.mean(frame.resolution_data, axis=0)
    Rmean = Resolution(mean_res_data)

    log.info("compute convolved sky and ivar")

    # The parameters are directly the unconvolved sky
    # First convolve with average resolution :
    convolved_sky_covar = Rmean.dot(parameter_covar).dot(Rmean.T.todense())

    # and keep only the diagonal
    convolved_sky_var = np.diagonal(convolved_sky_covar)

    # inverse
    convolved_sky_ivar = (convolved_sky_var > 0) / (convolved_sky_var +
                                                    (convolved_sky_var == 0))

    # and simply consider it's the same for all spectra
    cskyivar = np.tile(convolved_sky_ivar,
                       frame.nspec).reshape(frame.nspec, nwave)

    # The sky model for each fiber (simple convolution with resolution of each fiber)
    cskyflux = np.zeros(frame.flux.shape)

    Pol = allfibers_monomials.T.dot(coef).T
    for fiber in range(frame.nspec):
        cskyflux[fiber] = frame.R[fiber].dot(Pol[fiber] * parameters)

    # look at chi2 per wavelength and increase sky variance to reach chi2/ndf=1
    if skyfibers.size > 1 and add_variance:
        modified_cskyivar = _model_variance(frame, cskyflux, cskyivar,
                                            skyfibers)
    else:
        modified_cskyivar = cskyivar.copy()

    # need to do better here
    mask = (cskyivar == 0).astype(np.uint32)

    return SkyModel(
        frame.wave.copy(),
        cskyflux,
        modified_cskyivar,
        mask,
        nrej=nout_tot,
        stat_ivar=cskyivar)  # keep a record of the statistical ivar for QA
Ejemplo n.º 37
0
def myspecupdate(spectra_in, other) :

    # Does the other Spectra object have any data?

    if other.num_spectra() == 0:
        return

    # Do we have new bands to add?

    newbands = []
    for b in other.bands:
        if b not in spectra_in.bands:
            newbands.append(b)
        else:
            if not np.allclose(spectra_in.wave[b], other.wave[b]):
                raise RuntimeError("band {} has an incompatible wavelength grid".format(b))

    bands = list(spectra_in.bands)
    bands.extend(newbands)

    # Are we adding mask data in this update?

    add_mask = False
    if other.mask is None:
        if spectra_in.mask is not None:
            raise RuntimeError("existing spectra has a mask, cannot "
                "update it to a spectra with no mask")
    else:
        if spectra_in.mask is None:
            add_mask = True

    # Are we adding resolution data in this update?

    ndiag = {}

    add_res = False
    if other.resolution_data is None:
        if spectra_in.resolution_data is not None:
            raise RuntimeError("existing spectra has resolution data, cannot "
                "update it to a spectra with none")
    else:
        if spectra_in.resolution_data is not None:
            for b in spectra_in.bands:
                ndiag[b] = spectra_in.resolution_data[b].shape[1]
            for b in other.bands:
                odiag = other.resolution_data[b].shape[1]
                if b not in spectra_in.bands:
                    ndiag[b] = odiag
                else:
                    if odiag != ndiag[b]:
                        raise RuntimeError("Resolution matrices for a"
                            " given band must have the same dimensoins")
        else:
            add_res = True
            for b in other.bands:
                ndiag[b] = other.resolution_data[b].shape[1]

    # Are we adding extra data in this update?

    add_extra = False
    if other.extra is None:
        if spectra_in.extra is not None:
            raise RuntimeError("existing spectra has extra data, cannot "
                "update it to a spectra with none")
    else:
        if spectra_in.extra is None:
            add_extra = True

    # Compute which targets / exposures are new

    nother = len(other.fibermap)
    exists = np.zeros(nother, dtype=np.int)

    indx_original = []

    # EA modif :
    check_exists = True
    if ( (spectra_in.fibermap is None)
        or ("EXPID" not in spectra_in.fibermap.keys())
        or ("EXPID" not in other.fibermap.keys())
        or ("FIBER" not in spectra_in.fibermap.keys())
        or ("FIBER" not in other.fibermap.keys()) ) :
        check_exists = False
    if check_exists :
        for r in range(nother):
            expid = other.fibermap[r]["EXPID"]
            fiber = other.fibermap[r]["FIBER"]
            for i, row in enumerate(spectra_in.fibermap):
                if (expid == row["EXPID"]) and (fiber == row["FIBER"]):
                    indx_original.append(i)
                    exists[r] += 1

    if len(np.where(exists > 1)[0]) > 0:
        raise RuntimeError("found duplicate spectra (same EXPID and FIBER) in the fibermap")

    indx_exists = np.where(exists == 1)[0]
    indx_new = np.where(exists == 0)[0]

    # Make new data arrays of the correct size to hold both the old and
    # new data

    nupdate = len(indx_exists)
    nnew = len(indx_new)

    if spectra_in.fibermap is None:
        nold = 0
        newfmap = other.fibermap.copy()
    else:
        nold = len(spectra_in.fibermap)
        newfmap = encode_table(np.zeros( (nold + nnew, ),
                               dtype=spectra_in.fibermap.dtype))

    newwave = {}
    newflux = {}
    newivar = {}

    newmask = None
    if add_mask or spectra_in.mask is not None:
        newmask = {}

    newres = None
    newR = None
    if add_res or spectra_in.resolution_data is not None:
        newres = {}
        newR = {}

    newextra = None
    if add_extra or spectra_in.extra is not None:
        newextra = {}

    for b in bands:
        nwave = None
        if b in spectra_in.bands:
            nwave = spectra_in.wave[b].shape[0]
            newwave[b] = spectra_in.wave[b]
        else:
            nwave = other.wave[b].shape[0]
            newwave[b] = other.wave[b].astype(spectra_in._ftype)
        newflux[b] = np.zeros( (nold + nnew, nwave), dtype=spectra_in._ftype)
        newivar[b] = np.zeros( (nold + nnew, nwave), dtype=spectra_in._ftype)
        if newmask is not None:
            newmask[b] = np.zeros( (nold + nnew, nwave), dtype=np.uint32)
            newmask[b][:,:] = specmask["NODATA"]
        if newres is not None:
            newres[b] = np.zeros( (nold + nnew, ndiag[b], nwave), dtype=spectra_in._ftype)
        if newextra is not None:
            newextra[b] = {}

    # Copy the old data

    if nold > 0:
        # We have some data (i.e. we are not starting with an empty Spectra)
        newfmap[:nold] = spectra_in.fibermap

        for b in spectra_in.bands:
            newflux[b][:nold,:] = spectra_in.flux[b]
            newivar[b][:nold,:] = spectra_in.ivar[b]
            if spectra_in.mask is not None:
                newmask[b][:nold,:] = spectra_in.mask[b]
            elif add_mask:
                newmask[b][:nold,:] = 0
            if spectra_in.resolution_data is not None:
                newres[b][:nold,:,:] = spectra_in.resolution_data[b]
            if spectra_in.extra is not None:
                for ex in spectra_in.extra[b].items():
                    newextra[b][ex[0]] = np.zeros( newflux[b].shape,
                        dtype=spectra_in._ftype)
                    newextra[b][ex[0]][:nold,:] = ex[1]

    # Update existing spectra

    for i, s in enumerate(indx_exists):
        row = indx_original[i]
        for b in other.bands:
            newflux[b][row,:] = other.flux[b][s,:].astype(spectra_in._ftype)
            newivar[b][row,:] = other.ivar[b][s,:].astype(spectra_in._ftype)
            if other.mask is not None:
                newmask[b][row,:] = other.mask[b][s,:]
            else:
                newmask[b][row,:] = 0
            if other.resolution_data is not None:
                newres[b][row,:,:] = other.resolution_data[b][s,:,:].astype(spectra_in._ftype)
            if other.extra is not None:
                for ex in other.extra[b].items():
                    if ex[0] not in newextra[b]:
                        newextra[b][ex[0]] = np.zeros(newflux[b].shape,
                            dtype=spectra_in._ftype)
                    newextra[b][ex[0]][row,:] = ex[1][s,:].astype(spectra_in._ftype)

    # Append new spectra

    if nnew > 0:
        newfmap[nold:] = other.fibermap[indx_new]

        for b in other.bands:
            newflux[b][nold:,:] = other.flux[b][indx_new].astype(spectra_in._ftype)
            newivar[b][nold:,:] = other.ivar[b][indx_new].astype(spectra_in._ftype)
            if other.mask is not None:
                newmask[b][nold:,:] = other.mask[b][indx_new]
            else:
                newmask[b][nold:,:] = 0
            if other.resolution_data is not None:
                newres[b][nold:,:,:] = other.resolution_data[b][indx_new].astype(spectra_in._ftype)
            if other.extra is not None:
                for ex in other.extra[b].items():
                    if ex[0] not in newextra[b]:
                        newextra[b][ex[0]] = np.zeros(newflux[b].shape,
                            dtype=spectra_in._ftype)
                    newextra[b][ex[0]][nold:,:] = ex[1][indx_new].astype(spectra_in._ftype)

    # Update all sparse resolution matrices

    for b in bands:
        if newres is not None:
            newR[b] = np.array( [ Resolution(r) for r in newres[b] ] )

    # Swap data into place

    spectra_in._bands = bands
    spectra_in.wave = newwave
    spectra_in.fibermap = newfmap
    spectra_in.flux = newflux
    spectra_in.ivar = newivar
    spectra_in.mask = newmask
    spectra_in.resolution_data = newres
    spectra_in.R = newR
    spectra_in.extra = newextra

    return spectra_in
Ejemplo n.º 38
0
def compute_non_uniform_sky(frame,
                            nsig_clipping=4.,
                            max_iterations=10,
                            model_ivar=False,
                            add_variance=True,
                            angular_variation_deg=1):
    """Compute a sky model.
    
    Sky[fiber,i] = R[fiber,i,j] ( Flux_0[j] + x[fiber]*Flux_x[j] + y[fiber]*Flux_y[j] + ... )
    
    Input flux are expected to be flatfielded!
    We don't check this in this routine.

    Args:
        frame : Frame object, which includes attributes
          - wave : 1D wavelength grid in Angstroms
          - flux : 2D flux[nspec, nwave] density
          - ivar : 2D inverse variance of flux
          - mask : 2D inverse mask flux (0=good)
          - resolution_data : 3D[nspec, ndiag, nwave]  (only sky fibers)
        nsig_clipping : [optional] sigma clipping value for outlier rejection

    Optional:
        max_iterations : int , number of iterations
        model_ivar : replace ivar by a model to avoid bias due to correlated flux and ivar. this has a negligible effect on sims.
        add_variance : evaluate calibration error and add this to the sky model variance
        angular_variation_deg  : degree of 2D polynomial correction as a function of fiber focal plane coordinates (default=1). One set of coefficients per wavelength
    
    returns SkyModel object with attributes wave, flux, ivar, mask
    """

    log = get_logger()
    log.info("starting")

    # Grab sky fibers on this frame
    skyfibers = np.where(frame.fibermap['OBJTYPE'] == 'SKY')[0]
    assert np.max(skyfibers) < 500  #- indices, not fiber numbers

    nwave = frame.nwave
    nfibers = len(skyfibers)

    current_ivar = frame.ivar[skyfibers].copy() * (frame.mask[skyfibers] == 0)
    flux = frame.flux[skyfibers]
    Rsky = frame.R[skyfibers]

    # need focal plane coordinates of fibers
    x = frame.fibermap["FIBERASSIGN_X"][skyfibers]
    y = frame.fibermap["FIBERASSIGN_Y"][skyfibers]
    # normalize for numerical stability
    xm = np.mean(frame.fibermap["FIBERASSIGN_X"])
    ym = np.mean(frame.fibermap["FIBERASSIGN_Y"])
    xs = np.std(frame.fibermap["FIBERASSIGN_X"])
    ys = np.std(frame.fibermap["FIBERASSIGN_Y"])
    if xs == 0: xs = 1
    if ys == 0: ys = 1
    x = (x - xm) / xs
    y = (y - ym) / ys

    # precompute the monomials for the sky fibers
    log.debug("compute monomials for deg={}".format(angular_variation_deg))
    monomials = []
    for dx in range(angular_variation_deg + 1):
        for dy in range(angular_variation_deg + 1 - dx):
            monomials.append((x**dx) * (y**dy))
    ncoef = len(monomials)
    monomials = np.array(monomials)

    input_ivar = None
    if model_ivar:
        log.info(
            "use a model of the inverse variance to remove bias due to correlated ivar and flux"
        )
        input_ivar = current_ivar.copy()
        median_ivar_vs_wave = np.median(current_ivar, axis=0)
        median_ivar_vs_fiber = np.median(current_ivar, axis=1)
        median_median_ivar = np.median(median_ivar_vs_fiber)
        for f in range(current_ivar.shape[0]):
            threshold = 0.01
            current_ivar[f] = median_ivar_vs_fiber[
                f] / median_median_ivar * median_ivar_vs_wave
            # keep input ivar for very low weights
            ii = (input_ivar[f] <= (threshold * median_ivar_vs_wave))
            #log.info("fiber {} keep {}/{} original ivars".format(f,np.sum(ii),current_ivar.shape[1]))
            current_ivar[f][ii] = input_ivar[f][ii]

    sqrtw = np.sqrt(current_ivar)
    sqrtwflux = sqrtw * flux

    chi2 = np.zeros(flux.shape)

    nout_tot = 0
    for iteration in range(max_iterations):

        # the matrix A is 1/2 of the second derivative of the chi2 with respect to the parameters
        # A_ij = 1/2 d2(chi2)/di/dj
        # A_ij = sum_fiber sum_wave_w ivar[fiber,w] d(model)/di[fiber,w] * d(model)/dj[fiber,w]

        # the vector B is 1/2 of the first derivative of the chi2 with respect to the parameters
        # B_i  = 1/2 d(chi2)/di
        # B_i  = sum_fiber sum_wave_w ivar[fiber,w] d(model)/di[fiber,w] * (flux[fiber,w]-model[fiber,w])

        # with x_fiber,y_fiber the fiber coordinates in the focal plane (or sky)
        # the unconvolved sky flux at wavelength i is a polynomial of x_fiber,y_fiber
        # sky(fiber,i) = pol(x_fiber,y_fiber,p) = sum_p a_ip * x_fiber**degx(p) y_fiber**degy(p)
        # sky(fiber,i) =  sum_p monom[fiber,p] *  a_ip
        # the convolved sky flux at wavelength w is
        # model[fiber,w] = sum_i R[fiber][w,i] sum_p monom[fiber,p] *  a_ip
        # model[fiber,w] = sum_p monom[fiber,p] R[fiber][w,i] a_ip
        #
        # so, the matrix A is composed of blocks (p,k) corresponding to polynomial coefficient indices where
        # A[pk] = sum_fiber monom[fiber,p]*monom[fiber,k] sqrtwR[fiber] sqrtwR[fiber]^t
        # similarily
        # B[p]  =  sum_fiber monom[fiber,p] * sum_wave_w (sqrt(ivar)[fiber,w]*flux[fiber,w]) sqrtwR[fiber,wave]

        A = np.zeros((nwave * ncoef, nwave * ncoef))
        B = np.zeros((nwave * ncoef))

        # diagonal sparse matrix with content = sqrt(ivar)*flat of a given fiber
        SD = scipy.sparse.lil_matrix((nwave, nwave))

        # loop on fiber to handle resolution
        for fiber in range(nfibers):
            if fiber % 10 == 0:
                log.info("iter %d sky fiber %d/%d" %
                         (iteration, fiber, nfibers))
            R = Rsky[fiber]

            # diagonal sparse matrix with content = sqrt(ivar)
            SD.setdiag(sqrtw[fiber])

            sqrtwR = SD * R  # each row r of R is multiplied by sqrtw[r]

            #wRtR=(sqrtwR.T*sqrtwR).tocsr()
            wRtR = (sqrtwR.T * sqrtwR).todense()
            wRtF = sqrtwR.T * sqrtwflux[fiber]
            # loop on polynomial coefficients (double loop for A)
            # fill only blocks of A and B
            for p in range(ncoef):
                for k in range(ncoef):
                    A[p * nwave:(p + 1) * nwave, k * nwave:(k + 1) *
                      nwave] += monomials[p, fiber] * monomials[k,
                                                                fiber] * wRtR
                B[p * nwave:(p + 1) * nwave] += monomials[p, fiber] * wRtF

        log.info("iter %d solving" % iteration)
        w = A.diagonal() > 0
        A_pos_def = A[w, :]
        A_pos_def = A_pos_def[:, w]
        parameters = B * 0
        try:
            parameters[w] = cholesky_solve(A_pos_def, B[w])
        except:
            log.info("cholesky failed, trying svd in iteration {}".format(
                iteration))
            parameters[w] = np.linalg.lstsq(A_pos_def, B[w])[0]

        log.info("iter %d compute chi2" % iteration)

        for fiber in range(nfibers):
            # loop on polynomial indices
            unconvolved_fiber_sky_flux = np.zeros(nwave)
            for p in range(ncoef):
                unconvolved_fiber_sky_flux += monomials[
                    p, fiber] * parameters[p * nwave:(p + 1) * nwave]
            # then convolve
            fiber_convolved_sky_flux = Rsky[fiber].dot(
                unconvolved_fiber_sky_flux)

            chi2[fiber] = current_ivar[fiber] * (flux[fiber] -
                                                 fiber_convolved_sky_flux)**2

        log.info("rejecting")

        nout_iter = 0
        if iteration < 1:
            # only remove worst outlier per wave
            # apply rejection iteratively, only one entry per wave among fibers
            # find waves with outlier (fastest way)
            nout_per_wave = np.sum(chi2 > nsig_clipping**2, axis=0)
            selection = np.where(nout_per_wave > 0)[0]
            for i in selection:
                worst_entry = np.argmax(chi2[:, i])
                current_ivar[worst_entry, i] = 0
                sqrtw[worst_entry, i] = 0
                sqrtwflux[worst_entry, i] = 0
                nout_iter += 1

        else:
            # remove all of them at once
            bad = (chi2 > nsig_clipping**2)
            current_ivar *= (bad == 0)
            sqrtw *= (bad == 0)
            sqrtwflux *= (bad == 0)
            nout_iter += np.sum(bad)

        nout_tot += nout_iter

        sum_chi2 = float(np.sum(chi2))
        ndf = int(np.sum(chi2 > 0) - nwave)
        chi2pdf = 0.
        if ndf > 0:
            chi2pdf = sum_chi2 / ndf
        log.info("iter #%d chi2=%f ndf=%d chi2pdf=%f nout=%d" %
                 (iteration, sum_chi2, ndf, chi2pdf, nout_iter))

        if nout_iter == 0:
            break

    log.info("nout tot=%d" % nout_tot)

    # we know have to compute the sky model for all fibers
    # and propagate the uncertainties

    # no need to restore the original ivar to compute the model errors when modeling ivar
    # the sky inverse variances are very similar

    # is there a different method to compute this ?
    log.info("compute covariance")
    try:
        parameter_covar = cholesky_invert(A)
    except np.linalg.linalg.LinAlgError:
        log.warning(
            "cholesky_solve_and_invert failed, switching to np.linalg.lstsq and np.linalg.pinv"
        )
        parameter_covar = np.linalg.pinv(A)

    log.info("compute mean resolution")
    # we make an approximation for the variance to save CPU time
    # we use the average resolution of all fibers in the frame:
    mean_res_data = np.mean(frame.resolution_data, axis=0)
    Rmean = Resolution(mean_res_data)

    log.info("compute convolved sky and ivar")

    cskyflux = np.zeros(frame.flux.shape)
    cskyivar = np.zeros(frame.flux.shape)

    log.info("compute convolved parameter covariance")
    # The covariance of the parameters is composed of ncoef*ncoef blocks each of size nwave*nwave
    # A block (p,k) is the covariance of the unconvolved spectra p and k , corresponding to the polynomial indices p and k
    # We first sandwich each block with the average resolution.
    convolved_parameter_covar = np.zeros((ncoef, ncoef, nwave))
    for p in range(ncoef):
        for k in range(ncoef):
            convolved_parameter_covar[p, k] = np.diagonal(
                Rmean.dot(parameter_covar[p * nwave:(p + 1) * nwave,
                                          k * nwave:(k + 1) * nwave]).dot(
                                              Rmean.T.todense()))
    '''
    import astropy.io.fits as pyfits
    pyfits.writeto("convolved_parameter_covar.fits",convolved_parameter_covar,overwrite=True)
    
    # other approach
    log.info("dense Rmean...")
    Rmean=Rmean.todense()
    log.info("invert Rinv...")
    Rinv=np.linalg.inv(Rmean)
    # check this
    print("0?",np.max(np.abs(Rinv.dot(Rmean)-np.eye(Rmean.shape[0])))/np.max(np.abs(Rmean)))
    convolved_parameter_ivar=np.zeros((ncoef,ncoef,nwave))
    for p in range(ncoef) :
        for k in range(ncoef) :
            convolved_parameter_ivar[p,k] = np.diagonal(Rinv.T.dot(A[p*nwave:(p+1)*nwave,k*nwave:(k+1)*nwave]).dot(Rinv))
    # solve for each wave separately
    convolved_parameter_covar=np.zeros((ncoef,ncoef,nwave))
    for i in range(nwave) :
        print("inverting ivar of wave %d/%d"%(i,nwave))
        convolved_parameter_covar[:,:,i] = cholesky_invert(convolved_parameter_ivar[:,:,i])
    pyfits.writeto("convolved_parameter_covar_bis.fits",convolved_parameter_covar,overwrite=True)
    import sys
    sys.exit(12)
    '''

    # Now we compute the sky model variance for each fiber individually
    # accounting for its focal plane coordinates
    # so that a target fiber distant for a sky fiber will naturally have a larger
    # sky model variance
    log.info("compute sky and variance per fiber")
    for i in range(frame.nspec):
        # compute monomials
        M = []
        xi = (frame.fibermap["FIBERASSIGN_X"][i] - xm) / xs
        yi = (frame.fibermap["FIBERASSIGN_Y"][i] - ym) / ys
        for dx in range(angular_variation_deg + 1):
            for dy in range(angular_variation_deg + 1 - dx):
                M.append((xi**dx) * (yi**dy))
        M = np.array(M)

        unconvolved_fiber_sky_flux = np.zeros(nwave)
        convolved_fiber_skyvar = np.zeros(nwave)
        for p in range(ncoef):
            unconvolved_fiber_sky_flux += M[p] * parameters[p * nwave:(p + 1) *
                                                            nwave]
            for k in range(ncoef):
                convolved_fiber_skyvar += M[p] * M[
                    k] * convolved_parameter_covar[p, k]

        # convolve sky model with this fiber's resolution
        cskyflux[i] = frame.R[i].dot(unconvolved_fiber_sky_flux)

        # save inverse of variance
        cskyivar[i] = (convolved_fiber_skyvar > 0) / (
            convolved_fiber_skyvar + (convolved_fiber_skyvar == 0))

    # look at chi2 per wavelength and increase sky variance to reach chi2/ndf=1
    if skyfibers.size > 1 and add_variance:
        modified_cskyivar = _model_variance(frame, cskyflux, cskyivar,
                                            skyfibers)
    else:
        modified_cskyivar = cskyivar.copy()

    # need to do better here
    mask = (cskyivar == 0).astype(np.uint32)

    return SkyModel(
        frame.wave.copy(),
        cskyflux,
        modified_cskyivar,
        mask,
        nrej=nout_tot,
        stat_ivar=cskyivar)  # keep a record of the statistical ivar for QA
Ejemplo n.º 39
0
def main(args=None):
    '''
    Converts simspec -> frame files; see fastframe --help for usage options
    '''
    #- TODO: use desiutil.log

    if isinstance(args, (list, tuple, type(None))):
        args = parse(args)

    print('Reading files')
    simspec = desisim.io.read_simspec(args.simspec)

    if simspec.flavor == 'arc':
        print('arc exposure; no frames to output')
        return

    fibermap = simspec.fibermap
    obs = simspec.obs
    night = simspec.header['NIGHT']
    expid = simspec.header['EXPID']

    firstspec = args.firstspec
    nspec = min(args.nspec, len(fibermap) - firstspec)

    print('Simulating spectra {}-{}'.format(firstspec, firstspec + nspec))
    wave = simspec.wave['brz']
    flux = simspec.flux
    ii = slice(firstspec, firstspec + nspec)
    if simspec.flavor == 'science':
        sim = desisim.simexp.simulate_spectra(wave,
                                              flux[ii],
                                              fibermap=fibermap[ii],
                                              obsconditions=obs,
                                              dwave_out=1.0)
    elif simspec.flavor in ['arc', 'flat', 'calib']:
        x = fibermap['X_TARGET']
        y = fibermap['Y_TARGET']
        fiber_area = desisim.simexp.fiber_area_arcsec2(fibermap['X_TARGET'],
                                                       fibermap['Y_TARGET'])
        surface_brightness = (flux.T / fiber_area).T
        config = desisim.simexp._specsim_config_for_wave(wave, dwave_out=1.0)
        # sim = specsim.simulator.Simulator(config, num_fibers=nspec)
        sim = desisim.specsim.get_simulator(config, num_fibers=nspec)
        sim.observation.exposure_time = simspec.header['EXPTIME'] * u.s
        sbunit = 1e-17 * u.erg / (u.Angstrom * u.s * u.cm**2 * u.arcsec**2)
        xy = np.vstack([x, y]).T * u.mm
        sim.simulate(calibration_surface_brightness=surface_brightness[ii] *
                     sbunit,
                     focal_positions=xy[ii])
    else:
        raise ValueError('Unknown simspec flavor {}'.format(simspec.flavor))

    sim.generate_random_noise()

    for i, results in enumerate(sim.camera_output):
        results = sim.camera_output[i]
        wave = results['wavelength']
        phot = (results['num_source_electrons'] + \
                results['num_sky_electrons'] + \
                results['num_dark_electrons'] + \
                results['random_noise_electrons']).T
        ivar = 1.0 / results['variance_electrons'].T
        R = Resolution(
            sim.instrument.cameras[i].get_output_resolution_matrix())
        Rdata = np.tile(R.data.T, nspec).T.reshape(nspec, R.data.shape[0],
                                                   R.data.shape[1])
        assert np.all(Rdata[0] == R.data)
        assert phot.shape == (nspec, len(wave))
        for spectro in range(10):
            imin = max(firstspec, spectro * 500) - firstspec
            imax = min(firstspec + nspec, (spectro + 1) * 500) - firstspec
            if imax <= imin:
                continue
            xphot = phot[imin:imax]
            xivar = ivar[imin:imax]
            xfibermap = fibermap[ii][imin:imax]
            camera = '{}{}'.format(sim.camera_names[i], spectro)
            meta = simspec.header.copy()
            meta['CAMERA'] = camera
            frame = Frame(wave,
                          xphot,
                          xivar,
                          resolution_data=Rdata[0:imax - imin],
                          spectrograph=spectro,
                          fibermap=xfibermap,
                          meta=meta)
            outfile = desispec.io.findfile('frame',
                                           night,
                                           expid,
                                           camera,
                                           outdir=args.outdir)
            print('writing {}'.format(outfile))
            desispec.io.write_frame(outfile, frame)
# be in the next spectrograph file ('b0' has 500 total, 'b1' has 500 total, etc.)
for n in range(nadd_start, nadd_stop):
    # First, get the overall wavelength range of the spectrum
    # Individual cameras have 0.5 A resolutions
    # We make the final coadded spectrum uniformly spaced with 1.0 A bins
    spectrograph = int(n/500)
    ncameras = cameras[spectrograph::int(np.ceil(nspec/500.))]
    global_wavelength_grid = np.arange(cframes['b{:d}'.format(spectrograph)].wave[0],
                                       cframes['z{:d}'.format(spectrograph)].wave[-1] + 0.5,
                                       1.0, dtype=np.float32)
    
    coadd_all_bands = Spectrum(global_wavelength_grid)
    for band in ncameras:
        nn = n - 500*int(n / 500)
        band_specobj = Spectrum(cframes[band].wave,
                                flux=cframes[band].flux[nn],
                                ivar=cframes[band].ivar[nn],
                                resolution=Resolution(cframes[band].resolution_data[nn]))

        coadd_all_bands += band_specobj 
        print('Spectra %d: Added band %s' % (n, band))

    # Finalize the overall spectrum
    coadd_all_bands.finalize()
    print('{}/{} coadded'.format(n+1, nspec))

    # And write the output
    outfile = args.outdir + "spectra-%s-expid%03d-%05d.fits" % (args.night, args.expid, n)
    write_coadd_spectra(outfile, coadd_all_bands, meta[n], simspecfile) # fibermap=fiberap[n]
    print('written to {}'.format(outfile))
Ejemplo n.º 41
0
def main(args):

    # Set up the logger
    if args.verbose:
        log = get_logger(DEBUG)
    else:
        log = get_logger()

    # Make sure all necessary environment variables are set
    DESI_SPECTRO_REDUX_DIR="./quickGen"

    if 'DESI_SPECTRO_REDUX' not in os.environ:

        log.info('DESI_SPECTRO_REDUX environment is not set.')

    else:
        DESI_SPECTRO_REDUX_DIR=os.environ['DESI_SPECTRO_REDUX']

    if os.path.exists(DESI_SPECTRO_REDUX_DIR):

        if not os.path.isdir(DESI_SPECTRO_REDUX_DIR):
            raise RuntimeError("Path %s Not a directory"%DESI_SPECTRO_REDUX_DIR)
    else:
        try:
            os.makedirs(DESI_SPECTRO_REDUX_DIR)
        except:
            raise

    SPECPROD_DIR='specprod'
    if 'SPECPROD' not in os.environ:
        log.info('SPECPROD environment is not set.')
    else:
        SPECPROD_DIR=os.environ['SPECPROD']
    prod_Dir=specprod_root()

    if os.path.exists(prod_Dir):

        if not os.path.isdir(prod_Dir):
            raise RuntimeError("Path %s Not a directory"%prod_Dir)
    else:
        try:
            os.makedirs(prod_Dir)
        except:
            raise

    # Initialize random number generator to use.
    np.random.seed(args.seed)
    random_state = np.random.RandomState(args.seed)

    # Derive spectrograph number from nstart if needed
    if args.spectrograph is None:
        args.spectrograph = args.nstart / 500

    # Read fibermapfile to get object type, night and expid
    if args.fibermap:
        log.info("Reading fibermap file {}".format(args.fibermap))
        fibermap=read_fibermap(args.fibermap)
        objtype = get_source_types(fibermap)
        stdindx=np.where(objtype=='STD') # match STD with STAR
        mwsindx=np.where(objtype=='MWS_STAR') # match MWS_STAR with STAR
        bgsindx=np.where(objtype=='BGS') # match BGS with LRG
        objtype[stdindx]='STAR'
        objtype[mwsindx]='STAR'
        objtype[bgsindx]='LRG'
        NIGHT=fibermap.meta['NIGHT']
        EXPID=fibermap.meta['EXPID']
    else:
        # Create a blank fake fibermap
        fibermap = empty_fibermap(args.nspec)
        targetids = random_state.randint(2**62, size=args.nspec)
        fibermap['TARGETID'] = targetids
        night = get_night()
        expid = 0

    log.info("Initializing SpecSim with config {}".format(args.config))
    desiparams = load_desiparams()
    qsim = get_simulator(args.config, num_fibers=1)

    if args.simspec:
        # Read the input file
        log.info('Reading input file {}'.format(args.simspec))
        simspec = desisim.io.read_simspec(args.simspec)
        nspec = simspec.nspec
        if simspec.flavor == 'arc':
            log.warning("quickgen doesn't generate flavor=arc outputs")
            return
        else:
            wavelengths = simspec.wave
            spectra = simspec.flux
        if nspec < args.nspec:
            log.info("Only {} spectra in input file".format(nspec))
            args.nspec = nspec

    else:
        # Initialize the output truth table.
        spectra = []
        wavelengths = qsim.source.wavelength_out.to(u.Angstrom).value
        npix = len(wavelengths)
        truth = dict()
        meta = Table()
        truth['OBJTYPE'] = np.zeros(args.nspec, dtype=(str, 10))
        truth['FLUX'] = np.zeros((args.nspec, npix))
        truth['WAVE'] = wavelengths
        jj = list()

        for thisobj in set(true_objtype):
            ii = np.where(true_objtype == thisobj)[0]
            nobj = len(ii)
            truth['OBJTYPE'][ii] = thisobj
            log.info('Generating {} template'.format(thisobj))

            # Generate the templates
            if thisobj == 'ELG':
                elg = desisim.templates.ELG(wave=wavelengths, add_SNeIa=args.add_SNeIa)
                flux, tmpwave, meta1 = elg.make_templates(nmodel=nobj, seed=args.seed, zrange=args.zrange_elg,sne_rfluxratiorange=args.sne_rfluxratiorange)
            elif thisobj == 'LRG':
                lrg = desisim.templates.LRG(wave=wavelengths, add_SNeIa=args.add_SNeIa)
                flux, tmpwave, meta1 = lrg.make_templates(nmodel=nobj, seed=args.seed, zrange=args.zrange_lrg,sne_rfluxratiorange=args.sne_rfluxratiorange)
            elif thisobj == 'QSO':
                qso = desisim.templates.QSO(wave=wavelengths)
                flux, tmpwave, meta1 = qso.make_templates(nmodel=nobj, seed=args.seed, zrange=args.zrange_qso)
            elif thisobj == 'BGS':
                bgs = desisim.templates.BGS(wave=wavelengths, add_SNeIa=args.add_SNeIa)
                flux, tmpwave, meta1 = bgs.make_templates(nmodel=nobj, seed=args.seed, zrange=args.zrange_bgs,rmagrange=args.rmagrange_bgs,sne_rfluxratiorange=args.sne_rfluxratiorange)
            elif thisobj =='STD':
                std = desisim.templates.STD(wave=wavelengths)
                flux, tmpwave, meta1 = std.make_templates(nmodel=nobj, seed=args.seed)
            elif thisobj == 'QSO_BAD': # use STAR template no color cuts
                star = desisim.templates.STAR(wave=wavelengths)
                flux, tmpwave, meta1 = star.make_templates(nmodel=nobj, seed=args.seed)
            elif thisobj == 'MWS_STAR' or thisobj == 'MWS':
                mwsstar = desisim.templates.MWS_STAR(wave=wavelengths)
                flux, tmpwave, meta1 = mwsstar.make_templates(nmodel=nobj, seed=args.seed)
            elif thisobj == 'WD':
                wd = desisim.templates.WD(wave=wavelengths)
                flux, tmpwave, meta1 = wd.make_templates(nmodel=nobj, seed=args.seed)
            elif thisobj == 'SKY':
                flux = np.zeros((nobj, npix))
                meta1 = Table(dict(REDSHIFT=np.zeros(nobj, dtype=np.float32)))
            elif thisobj == 'TEST':
                flux = np.zeros((args.nspec, npix))
                indx = np.where(wave>5800.0-1E-6)[0][0]
                ref_integrated_flux = 1E-10
                ref_cst_flux_density = 1E-17
                single_line = (np.arange(args.nspec)%2 == 0).astype(np.float32)
                continuum   = (np.arange(args.nspec)%2 == 1).astype(np.float32)

                for spec in range(args.nspec) :
                    flux[spec,indx] = single_line[spec]*ref_integrated_flux/np.gradient(wavelengths)[indx] # single line
                    flux[spec] += continuum[spec]*ref_cst_flux_density # flat continuum

                meta1 = Table(dict(REDSHIFT=np.zeros(args.nspec, dtype=np.float32),
                                   LINE=wave[indx]*np.ones(args.nspec, dtype=np.float32),
                                   LINEFLUX=single_line*ref_integrated_flux,
                                   CONSTFLUXDENSITY=continuum*ref_cst_flux_density))
            else:
                log.fatal('Unknown object type {}'.format(thisobj))
                sys.exit(1)

            # Pack it in.
            truth['FLUX'][ii] = flux
            meta = vstack([meta, meta1])
            jj.append(ii.tolist())

            # Sanity check on units; templates currently return ergs, not 1e-17 ergs...
            # assert (thisobj == 'SKY') or (np.max(truth['FLUX']) < 1e-6)

        # Sort the metadata table.
        jj = sum(jj,[])
        meta_new = Table()
        for k in range(args.nspec):
            index = int(np.where(np.array(jj) == k)[0])
            meta_new = vstack([meta_new, meta[index]])
        meta = meta_new

        # Add TARGETID and the true OBJTYPE to the metadata table.
        meta.add_column(Column(true_objtype, dtype=(str, 10), name='TRUE_OBJTYPE'))
        meta.add_column(Column(targetids, name='TARGETID'))

        # Rename REDSHIFT -> TRUEZ anticipating later table joins with zbest.Z
        meta.rename_column('REDSHIFT', 'TRUEZ')

    # explicitly set location on focal plane if needed to support airmass
    # variations when using specsim v0.5
    if qsim.source.focal_xy is None:
        qsim.source.focal_xy = (u.Quantity(0, 'mm'), u.Quantity(100, 'mm'))

    # Set simulation parameters from the simspec header or desiparams
    bright_objects = ['bgs','mws','bright','BGS','MWS','BRIGHT_MIX']
    gray_objects = ['gray','grey']
    if args.simspec is None:
        object_type = objtype
        flavor = None
    elif simspec.flavor == 'science':
        object_type = None
        flavor = simspec.header['PROGRAM']
    else:
        object_type = None
        flavor = simspec.flavor
        log.warning('Maybe using an outdated simspec file with flavor={}'.format(flavor))

    # Set airmass
    if args.airmass is not None:
        qsim.atmosphere.airmass = args.airmass
    elif args.simspec and 'AIRMASS' in simspec.header:
        qsim.atmosphere.airmass = simspec.header['AIRMASS']
    else:
        qsim.atmosphere.airmass =  1.25   # Science Req. Doc L3.3.2
        
    # Set exptime
    if args.exptime is not None:
        qsim.observation.exposure_time = args.exptime * u.s
    elif args.simspec and 'EXPTIME' in simspec.header:
        qsim.observation.exposure_time = simspec.header['EXPTIME'] * u.s
    elif objtype in bright_objects:
        qsim.observation.exposure_time = desiparams['exptime_bright'] * u.s
    else:
        qsim.observation.exposure_time = desiparams['exptime_dark'] * u.s

    # Set Moon Phase
    if args.moon_phase is not None:
        qsim.atmosphere.moon.moon_phase = args.moon_phase
    elif args.simspec and 'MOONFRAC' in simspec.header:
        qsim.atmosphere.moon.moon_phase = simspec.header['MOONFRAC']
    elif flavor in bright_objects or object_type in bright_objects:
        qsim.atmosphere.moon.moon_phase = 0.7
    elif flavor in gray_objects:
        qsim.atmosphere.moon.moon_phase = 0.1
    else:
        qsim.atmosphere.moon.moon_phase = 0.5
        
    # Set Moon Zenith
    if args.moon_zenith is not None:
        qsim.atmosphere.moon.moon_zenith = args.moon_zenith * u.deg
    elif args.simspec and 'MOONALT' in simspec.header:
        qsim.atmosphere.moon.moon_zenith = simspec.header['MOONALT'] * u.deg
    elif flavor in bright_objects or object_type in bright_objects:
        qsim.atmosphere.moon.moon_zenith = 30 * u.deg
    elif flavor in gray_objects:
        qsim.atmosphere.moon.moon_zenith = 80 * u.deg
    else:
        qsim.atmosphere.moon.moon_zenith = 100 * u.deg

    # Set Moon - Object Angle
    if args.moon_angle is not None:
        qsim.atmosphere.moon.separation_angle = args.moon_angle * u.deg
    elif args.simspec and 'MOONSEP' in simspec.header:
        qsim.atmosphere.moon.separation_angle = simspec.header['MOONSEP'] * u.deg
    elif flavor in bright_objects or object_type in bright_objects:
        qsim.atmosphere.moon.separation_angle = 50 * u.deg
    elif flavor in gray_objects:
        qsim.atmosphere.moon.separation_angle = 60 * u.deg
    else:
        qsim.atmosphere.moon.separation_angle = 60 * u.deg

    # Initialize per-camera output arrays that will be saved
    waves, trueflux, noisyflux, obsivar, resolution, sflux = {}, {}, {}, {}, {}, {}

    maxbin = 0
    nmax= args.nspec
    for camera in qsim.instrument.cameras:
        # Lookup this camera's resolution matrix and convert to the sparse
        # format used in desispec.
        R = Resolution(camera.get_output_resolution_matrix())
        resolution[camera.name] = np.tile(R.to_fits_array(), [args.nspec, 1, 1])
        waves[camera.name] = (camera.output_wavelength.to(u.Angstrom).value.astype(np.float32))
        nwave = len(waves[camera.name])
        maxbin = max(maxbin, len(waves[camera.name]))
        nobj = np.zeros((nmax,3,maxbin)) # object photons
        nsky = np.zeros((nmax,3,maxbin)) # sky photons
        nivar = np.zeros((nmax,3,maxbin)) # inverse variance (object+sky)
        cframe_observedflux = np.zeros((nmax,3,maxbin))  # calibrated object flux
        cframe_ivar = np.zeros((nmax,3,maxbin)) # inverse variance of calibrated object flux
        cframe_rand_noise = np.zeros((nmax,3,maxbin)) # random Gaussian noise to calibrated flux
        sky_ivar = np.zeros((nmax,3,maxbin)) # inverse variance of sky
        sky_rand_noise = np.zeros((nmax,3,maxbin)) # random Gaussian noise to sky only
        frame_rand_noise = np.zeros((nmax,3,maxbin)) # random Gaussian noise to nobj+nsky
        trueflux[camera.name] = np.empty((args.nspec, nwave)) # calibrated flux
        noisyflux[camera.name] = np.empty((args.nspec, nwave)) # observed flux with noise
        obsivar[camera.name] = np.empty((args.nspec, nwave)) # inverse variance of flux
        if args.simspec:
            for i in range(10):
                cn = camera.name + str(i)
                if cn in simspec.cameras:
                    dw = np.gradient(simspec.cameras[cn].wave)
                    break
            else:
                raise RuntimeError('Unable to find a {} camera in input simspec'.format(camera))
        else:
            sflux = np.empty((args.nspec, npix))

    #- Check if input simspec is for a continuum flat lamp instead of science
    #- This does not convolve to per-fiber resolution
    if args.simspec:
        if simspec.flavor == 'flat':
            log.info("Simulating flat lamp exposure")
            for i,camera in enumerate(qsim.instrument.cameras):
                channel = camera.name   #- from simspec, b/r/z not b0/r1/z9
                assert camera.output_wavelength.unit == u.Angstrom
                num_pixels = len(waves[channel])

                phot = list()
                for j in range(10):
                    cn = camera.name + str(j)
                    if cn in simspec.cameras:
                        camwave = simspec.cameras[cn].wave
                        dw = np.gradient(camwave)
                        phot.append(simspec.cameras[cn].phot)

                if len(phot) == 0:
                    raise RuntimeError('Unable to find a {} camera in input simspec'.format(camera))
                else:
                    phot = np.vstack(phot)

                meanspec = resample_flux(
                    waves[channel], camwave, np.average(phot/dw, axis=0))

                fiberflat = random_state.normal(loc=1.0,
                    scale=1.0 / np.sqrt(meanspec), size=(nspec, num_pixels))
                ivar = np.tile(meanspec, [nspec, 1])
                mask = np.zeros((simspec.nspec, num_pixels), dtype=np.uint32)

                for kk in range((args.nspec+args.nstart-1)//500+1):
                    camera = channel+str(kk)
                    outfile = desispec.io.findfile('fiberflat', NIGHT, EXPID, camera)
                    start=max(500*kk,args.nstart)
                    end=min(500*(kk+1),nmax)

                    if (args.spectrograph <= kk):
                        log.info("Writing files for channel:{}, spectrograph:{}, spectra:{} to {}".format(channel,kk,start,end))

                    ff = FiberFlat(
                        waves[channel], fiberflat[start:end,:],
                        ivar[start:end,:], mask[start:end,:], meanspec,
                        header=dict(CAMERA=camera))
                    write_fiberflat(outfile, ff)
                    filePath=desispec.io.findfile("fiberflat",NIGHT,EXPID,camera)
                    log.info("Wrote file {}".format(filePath))

            sys.exit(0)

    # Repeat the simulation for all spectra
    fluxunits = 1e-17 * u.erg / (u.s * u.cm ** 2 * u.Angstrom)
    for j in range(args.nspec):

        thisobjtype = objtype[j]
        sys.stdout.flush()
        if flavor == 'arc':
            qsim.source.update_in(
                'Quickgen source {0}'.format, 'perfect',
                wavelengths * u.Angstrom, spectra * fluxunits)
        else:
            qsim.source.update_in(
                'Quickgen source {0}'.format(j), thisobjtype.lower(),
                wavelengths * u.Angstrom, spectra[j, :] * fluxunits)
        qsim.source.update_out()

        qsim.simulate()
        qsim.generate_random_noise(random_state)

        for i, output in enumerate(qsim.camera_output):
            assert output['observed_flux'].unit == 1e17 * fluxunits
            # Extract the simulation results needed to create our uncalibrated
            # frame output file.
            num_pixels = len(output)
            nobj[j, i, :num_pixels] = output['num_source_electrons'][:,0]
            nsky[j, i, :num_pixels] = output['num_sky_electrons'][:,0]
            nivar[j, i, :num_pixels] = 1.0 / output['variance_electrons'][:,0]

            # Get results for our flux-calibrated output file.
            cframe_observedflux[j, i, :num_pixels] = 1e17 * output['observed_flux'][:,0]
            cframe_ivar[j, i, :num_pixels] = 1e-34 * output['flux_inverse_variance'][:,0]

            # Fill brick arrays from the results.
            camera = output.meta['name']
            trueflux[camera][j][:] = 1e17 * output['observed_flux'][:,0]
            noisyflux[camera][j][:] = 1e17 * (output['observed_flux'][:,0] +
                output['flux_calibration'][:,0] * output['random_noise_electrons'][:,0])
            obsivar[camera][j][:] = 1e-34 * output['flux_inverse_variance'][:,0]

            # Use the same noise realization in the cframe and frame, without any
            # additional noise from sky subtraction for now.
            frame_rand_noise[j, i, :num_pixels] = output['random_noise_electrons'][:,0]
            cframe_rand_noise[j, i, :num_pixels] = 1e17 * (
                output['flux_calibration'][:,0] * output['random_noise_electrons'][:,0])

            # The sky output file represents a model fit to ~40 sky fibers.
            # We reduce the variance by a factor of 25 to account for this and
            # give the sky an independent (Gaussian) noise realization.
            sky_ivar[j, i, :num_pixels] = 25.0 / (
                output['variance_electrons'][:,0] - output['num_source_electrons'][:,0])
            sky_rand_noise[j, i, :num_pixels] = random_state.normal(
                scale=1.0 / np.sqrt(sky_ivar[j,i,:num_pixels]),size=num_pixels)

    armName={"b":0,"r":1,"z":2}
    for channel in 'brz':

        #Before writing, convert from counts/bin to counts/A (as in Pixsim output)
        #Quicksim Default:
        #FLUX - input spectrum resampled to this binning; no noise added [1e-17 erg/s/cm2/s/Ang]
        #COUNTS_OBJ - object counts in 0.5 Ang bin
        #COUNTS_SKY - sky counts in 0.5 Ang bin

        num_pixels = len(waves[channel])
        dwave=np.gradient(waves[channel])
        nobj[:,armName[channel],:num_pixels]/=dwave
        frame_rand_noise[:,armName[channel],:num_pixels]/=dwave
        nivar[:,armName[channel],:num_pixels]*=dwave**2
        nsky[:,armName[channel],:num_pixels]/=dwave
        sky_rand_noise[:,armName[channel],:num_pixels]/=dwave
        sky_ivar[:,armName[channel],:num_pixels]/=dwave**2

        # Now write the outputs in DESI standard file system. None of the output file can have more than 500 spectra

        # Looping over spectrograph
        for ii in range((args.nspec+args.nstart-1)//500+1):

            start=max(500*ii,args.nstart) # first spectrum for a given spectrograph
            end=min(500*(ii+1),nmax) # last spectrum for the spectrograph

            if (args.spectrograph <= ii):
                camera = "{}{}".format(channel, ii)
                log.info("Writing files for channel:{}, spectrograph:{}, spectra:{} to {}".format(channel,ii,start,end))
                num_pixels = len(waves[channel])

                # Write frame file
                framefileName=desispec.io.findfile("frame",NIGHT,EXPID,camera)

                frame_flux=nobj[start:end,armName[channel],:num_pixels]+ \
                nsky[start:end,armName[channel],:num_pixels] + \
                frame_rand_noise[start:end,armName[channel],:num_pixels]
                frame_ivar=nivar[start:end,armName[channel],:num_pixels]

                sh1=frame_flux.shape[0]  # required for slicing the resolution metric, resolusion matrix has (nspec,ndiag,wave)
                                          # for example if nstart =400, nspec=150: two spectrographs:
                                          # 400-499=> 0 spectrograph, 500-549 => 1
                if (args.nstart==start):
                    resol=resolution[channel][:sh1,:,:]
                else:
                    resol=resolution[channel][-sh1:,:,:]

                # must create desispec.Frame object
                frame=Frame(waves[channel], frame_flux, frame_ivar,\
                    resolution_data=resol, spectrograph=ii, \
                    fibermap=fibermap[start:end], \
                    meta=dict(CAMERA=camera, FLAVOR=simspec.flavor) )
                desispec.io.write_frame(framefileName, frame)

                framefilePath=desispec.io.findfile("frame",NIGHT,EXPID,camera)
                log.info("Wrote file {}".format(framefilePath))

                if args.frameonly or simspec.flavor == 'arc':
                    continue

                # Write cframe file
                cframeFileName=desispec.io.findfile("cframe",NIGHT,EXPID,camera)
                cframeFlux=cframe_observedflux[start:end,armName[channel],:num_pixels]+cframe_rand_noise[start:end,armName[channel],:num_pixels]
                cframeIvar=cframe_ivar[start:end,armName[channel],:num_pixels]

                # must create desispec.Frame object
                cframe = Frame(waves[channel], cframeFlux, cframeIvar, \
                    resolution_data=resol, spectrograph=ii,
                    fibermap=fibermap[start:end],
                    meta=dict(CAMERA=camera, FLAVOR=simspec.flavor) )
                desispec.io.frame.write_frame(cframeFileName,cframe)

                cframefilePath=desispec.io.findfile("cframe",NIGHT,EXPID,camera)
                log.info("Wrote file {}".format(cframefilePath))

                # Write sky file
                skyfileName=desispec.io.findfile("sky",NIGHT,EXPID,camera)
                skyflux=nsky[start:end,armName[channel],:num_pixels] + \
                sky_rand_noise[start:end,armName[channel],:num_pixels]
                skyivar=sky_ivar[start:end,armName[channel],:num_pixels]
                skymask=np.zeros(skyflux.shape, dtype=np.uint32)

                # must create desispec.Sky object
                skymodel = SkyModel(waves[channel], skyflux, skyivar, skymask,
                    header=dict(CAMERA=camera))
                desispec.io.sky.write_sky(skyfileName, skymodel)

                skyfilePath=desispec.io.findfile("sky",NIGHT,EXPID,camera)
                log.info("Wrote file {}".format(skyfilePath))

                # Write calib file
                calibVectorFile=desispec.io.findfile("calib",NIGHT,EXPID,camera)
                flux = cframe_observedflux[start:end,armName[channel],:num_pixels]
                phot = nobj[start:end,armName[channel],:num_pixels]
                calibration = np.zeros_like(phot)
                jj = (flux>0)
                calibration[jj] = phot[jj] / flux[jj]

                #- TODO: what should calibivar be?
                #- For now, model it as the noise of combining ~10 spectra
                calibivar=10/cframe_ivar[start:end,armName[channel],:num_pixels]
                #mask=(1/calibivar>0).astype(int)??
                mask=np.zeros(calibration.shape, dtype=np.uint32)

                # write flux calibration
                fluxcalib = FluxCalib(waves[channel], calibration, calibivar, mask)
                write_flux_calibration(calibVectorFile, fluxcalib)

                calibfilePath=desispec.io.findfile("calib",NIGHT,EXPID,camera)
                log.info("Wrote file {}".format(calibfilePath))