Ejemplo n.º 1
0
    def fugacity_coefficient(self, P, rho, xi, T, dy=1e-5, log_method=True):
        """
        Compute fugacity coefficient.
      
        Parameters
        ----------
        P : float
            Pressure of the system [Pa]
        rho : float
            Molar density of system [:math:`mol/m^3`]
        T : float
            Temperature of the system [K]
        xi : list[float]
            Mole fraction of each component, sum(xi) should equal 1.0
        log_method : bool, Optional, default=False
            Choose to use a log transform in central difference method. This allows easier calculations for very small numbers.
    
        Returns
        -------
        fugacity_coefficient : numpy.ndarray
            Array of fugacity coefficient values for each component
        """
        if len(xi) != self.number_of_components:
            raise ValueError(
                "Number of components in mole fraction list, {}, doesn't match self.number_of_components, {}"
                .format(len(xi), self.number_of_components))

        if gtb.isiterable(T):
            if len(T) == 1:
                T = T[0]
            else:
                raise ValueError("Temperature must be given as a scalar.")
        if gtb.isiterable(rho):
            if len(rho) == 1:
                rho = rho[0]
            else:
                raise ValueError("Density must be given as a scalar.")
        if gtb.isiterable(P):
            if len(P) == 1:
                P = P[0]
            else:
                raise ValueError("Pressure must be given as a scalar.")

        rho = self._check_density(rho)
        logZ = np.log(P / (rho * T * constants.R))
        Ares = self.residual_helmholtz_energy(rho, T, xi)
        dAresdrho = tb.partial_density_central_difference(
            xi,
            rho,
            T,
            self.residual_helmholtz_energy,
            step_size=dy,
            log_method=True)

        phi = np.exp(Ares + rho * dAresdrho - logZ)

        return phi
Ejemplo n.º 2
0
    def pressure(self, rho, T, xi):
        """
        Compute pressure given system information
       
        Parameters
        ----------
        rho : numpy.ndarray
            Number density of system [:math:`mol/m^3`]
        T : float
            Temperature of the system [K]
        xi : list[float]
            Mole fraction of each component
       
        Returns
        -------
        P : numpy.ndarray
            Array of pressure values [Pa] associated with each density and so equal in length
        """

        if T != self.T:
            self.T = T
            self._calc_temp_dependent_parameters(T)

        self._calc_mixed_parameters(xi, T)

        if not gtb.isiterable(rho):
            rho = np.array([rho])
        elif not isinstance(rho, np.ndarray):
            rho = np.array(rho)

        P = constants.R * self.T * rho / (
            1 - self.eos_dict["bij"] * rho) - rho**2 * self.eos_dict["aij"] / (
                (1 + self.eos_dict["bij"] * rho) + rho * self.eos_dict["bij"] *
                (1 - self.eos_dict["bij"] * rho))

        return P
Ejemplo n.º 3
0
def reformat_output(cluster):
    r"""
    Takes a list of lists that contain thermo output of lists and floats and reformats it into a 2D numpy array.
 
    Parameters
    ----------
    cluster : list[list[list/floats]]
        A list of lists, where the inner list is made up of lists and floats

    Returns
    -------
    matrix : numpy.ndarray
        A 2D matrix
    len_cluster : list
        a list of lengths for each of the columns (whether 1 for float, or len(list))
        
    """

    # if input is a list or array
    if len(cluster) == 1:
        matrix = np.transpose(np.array(cluster[0]))
        if not gtb.isiterable(cluster[0]):
            len_cluster = [1]
        else:
            len_cluster = [len(cluster[0])]
    # If list of lists or arrays
    else:

        # Obtain dimensions of final matrix
        len_cluster = []
        for i, tmp_cluster in enumerate(cluster):
            if gtb.isiterable(tmp_cluster[0]):
                len_cluster.append(len(tmp_cluster[0]))
            else:
                len_cluster.append(1)
        matrix_tmp = np.zeros([len(cluster[0]), sum(len_cluster)])

        # Transfer information to final matrix
        ind = 0
        for i, val in enumerate(cluster):
            try:
                matrix = np.zeros([len(val[0]), len(val)])
            except Exception:
                matrix = np.zeros([1, len(val)])
            for j, tmp in enumerate(
                    val
            ):  # yes, this is a simple transpose, but for some reason a numpy array of np arrays wouldn't transpose
                matrix[:, j] = tmp
            l = len_cluster[i]
            if l == 1:
                matrix_tmp[:, ind] = np.array(matrix)
                ind += 1
            else:
                if len(matrix) == 1:
                    matrix = matrix[0]

                for j in range(l):
                    matrix_tmp[:, ind] = matrix[j]
                    ind += 1

        matrix = np.array(matrix_tmp)

    return matrix, len_cluster
Ejemplo n.º 4
0
    def __init__(self, data_dict):

        super().__init__(data_dict)

        # If required items weren't defined, set defaults
        self.name = "saturation_properties"
        if self.thermodict["calculation_type"] == None:
            self.thermodict["calculation_type"] = "saturation_properties"

        tmp = {
            "min_density_fraction": (1.0 / 80000.0),
            "density_increment": 10.0,
            "max_volume_increment": 1.0e-4,
        }
        if "density_opts" in self.thermodict:
            tmp.update(self.thermodict["density_opts"])
        self.thermodict["density_opts"] = tmp

        # Extract system data
        if "xi" in data_dict:
            self.thermodict["xilist"] = data_dict["xi"]
            del data_dict["xi"]
        if "yi" in data_dict:
            self.thermodict["xilist"] = data_dict["yi"]
            logger.info("Vapor mole fraction recorded as 'xi'")
            del data_dict["yi"]
        if "T" in data_dict:
            self.thermodict["Tlist"] = data_dict["T"]
            del data_dict["T"]
        if "P" in data_dict:
            self.thermodict["Psat"] = data_dict["P"]
            del data_dict["P"]
            if "P" in self.weights:
                if gtb.isiterable(self.weights["P"]) and len(
                        self.weights["P"]) != len(self.thermodict["Psat"]):
                    raise ValueError(
                        "Array of weights for '{}' values not equal to number of experimental values given."
                        .format("P"))
                else:
                    self.weights["Psat"] = self.weights.pop("P")

        self.thermodict.update(data_dict)

        thermo_keys = ["xilist", "Tlist"]
        self.result_keys = ["rhol", "rhov", "Psat"]

        key_list = list(set(thermo_keys + self.result_keys))
        self.thermodict.update(gtb.check_length_dict(self.thermodict,
                                                     key_list))
        for key in self.result_keys:
            if key in self.thermodict:
                self.npoints = np.size(self.thermodict[key])
                break

        if "xilist" not in self.thermodict and self.Eos.number_of_components > 1:
            raise ValueError(
                "Ambiguous instructions. Include xi to define intended component to obtain saturation properties"
            )
        thermo_defaults = [
            np.array([[1.0] for x in range(self.npoints)]),
            constants.standard_temperature,
        ]
        self.thermodict.update(
            gtb.set_defaults(self.thermodict,
                             thermo_keys,
                             thermo_defaults,
                             lx=self.npoints))

        self.weights.update(
            gtb.check_length_dict(self.weights,
                                  self.result_keys,
                                  lx=self.npoints))
        self.weights.update(
            gtb.set_defaults(self.weights, self.result_keys, 1.0))

        if "Tlist" not in self.thermodict:
            raise ImportError(
                "Given saturation data, value(s) for T should have been provided."
            )

        tmp = ["Psat", "rhol", "rhov"]
        if not any([x in self.thermodict for x in tmp]):
            raise ImportError(
                "Given saturation data, values for Psat, rhol, and/or rhov should have been provided."
            )

        logger.info(
            "Data type 'saturation_properties' initiated with calculation_type, {}, and data types: {}.\nWeight data by: {}"
            .format(
                self.thermodict["calculation_type"],
                ", ".join(self.result_keys),
                self.weights,
            ))
Ejemplo n.º 5
0
    def fugacity_coefficient(self, P, rho, xi, T):
        r"""
        Compute fugacity coefficient
      
        Parameters
        ----------
        P : float
            Pressure of the system [Pa]
        rho : float
            Molar density of system [:math:`mol/m^3`]
        T : float
            Temperature of the system [K]
        xi : list[float]
            Mole fraction of each component
    
        Returns
        -------
        fugacity_coefficient : numpy.ndarray
            :math:`\phi_i`, Array of fugacity coefficient values for each component
        """

        if gtb.isiterable(T):
            if len(T) == 1:
                T = T[0]
            else:
                raise ValueError("Temperature must be given as a scalar.")
        if gtb.isiterable(rho):
            if len(rho) == 1:
                rho = rho[0]
            else:
                raise ValueError("Density must be given as a scalar.")
        if gtb.isiterable(P):
            if len(P) == 1:
                P = P[0]
            else:
                raise ValueError("Pressure must be given as a scalar.")

        if T != self.T:
            self.T = T
            self._calc_temp_dependent_parameters(T)

        self._calc_mixed_parameters(xi, T)

        tmp_RT = constants.R * T

        Z = P / (tmp_RT * rho)
        Ai = self.eos_dict["ai"] * self.eos_dict["alpha"] * P / tmp_RT**2
        Bi = self.eos_dict["bi"] * P / tmp_RT
        B = self.eos_dict["bij"] * P / tmp_RT
        A = self.eos_dict["aij"] * P / tmp_RT**2

        sqrt2 = np.sqrt(2.0)
        tmp1 = (A / (2.0 * sqrt2 * B) * np.log(
            (Z + (1 + sqrt2) * B) / (Z + (1 - sqrt2) * B)))
        tmp3 = Bi * (Z - 1) / B - np.log(Z - B)
        tmp2 = np.zeros(len(xi))

        index = range(len(xi))
        for i in index:
            Aij = np.zeros(len(xi))
            for j in index:
                Aij[j] = np.sqrt(
                    Ai[i] * Ai[j]) * (1.0 - self.eos_dict["kij"][i][j])
            tmp2[i] = Bi[i] / B - 2 * np.sum(xi * Aij) / A
        phi = np.exp(tmp1 * tmp2 + tmp3)

        return phi
Ejemplo n.º 6
0
def obj_function_form(
    data_test,
    data0,
    weights=1.0,
    method="average-squared-deviation",
    nan_number=1000,
    nan_ratio=0.1,
):
    """
    Sets objective functional form 

    Note that if the result is np.nan, that point is removed from the list for the purposes of averaging.

    Parameters
    ----------
    data_test : numpy.ndarray
        Data that is being assessed. Array of data of the same length as ``data_test``
    data0 : numpy.ndarray
        Reference data for comparison
    weights : (numpy.ndarray or float), Optional, default=1.0
        Can be a float or array of data of the same length as ``data_test``. Allows the user to tune the importance of various data points.
    method : str, Optional, default="mean-squared-relative-error"
        Keyword used to choose the functional form. Can be:

        - average-squared-deviation: :math:`\sum{(\\frac{data\_test-data0}{data0})^2}/N`
        - sum-squared-deviation: :math:`\sum{(\\frac{data\_test-data0}{data0})^2}`
        - sum-squared-deviation-boltz: :math:`\sum{(\\frac{data\_test-data0}{data0})^2 exp(\\frac{data\_test\_min-data\_test}{|data\_test\_min|})}` [DOI: 10.1063/1.2181979]
        - sum-deviation-boltz: :math:`\sum{\\frac{data\_test-data0}{data0} exp(\\frac{data\_test\_min-data\_test}{|data\_test\_min|})}` [DOI: 10.1063/1.2181979]
        - percent-absolute-average-deviation: :math:`\sum{(\\frac{data\_test-data0}{data0})^2}/N \\times 100`

    nan_ratio : float, Optional, default=0.1
        If more than "nan_ratio*100" percent of the calculated data failed to produce NaN, increase the objective value by the number of entries where data_test is NaN times ``nan_number``.
    nan_number : float, Optional, default=1000
        If a thermodynamic calculation produces NaN, add this quantity to the objective value. (See nan_ratio)

    Returns
    -------
    obj_value : float
        Objective value given the calculated and reference information
    """

    if np.size(data0) != np.size(data_test):
        raise ValueError(
            "Input data of length, {}, must be the same length as reference data of length {}"
            .format(len(data_test), len(data0)))

    if np.size(weights) > 1 and np.size(weights) != np.size(data_test):
        raise ValueError(
            "Weight for data is provided as an array of length, {}, but must be length, {}."
            .format(len(weights), len(data_test)))

    data_tmp = np.array([(data_test[i] - data0[i]) / data0[i]
                         for i in range(len(data_test))
                         if not np.isnan((data_test[i] - data0[i]) / data0[i])
                         ])
    if gtb.isiterable(weights):
        weight_tmp = np.array([
            weights[i] for i in range(len(data_test))
            if not np.isnan((data_test[i] - data0[i]) / data0[i])
        ])
    else:
        weight_tmp = weights

    if method == "average-squared-deviation":
        obj_value = np.mean(data_tmp**2 * weight_tmp)

    elif method == "sum-squared-deviation":
        obj_value = np.sum(data_tmp**2 * weight_tmp)

    elif method == "sum-squared-deviation-boltz":
        data_min = np.min(data_tmp)
        obj_value = np.sum(data_tmp**2 * weight_tmp * np.exp(
            (data_min - data_tmp) / np.abs(data_min)))

    elif method == "sum-deviation-boltz":
        data_min = np.min(data_tmp)
        obj_value = np.sum(data_tmp * weight_tmp * np.exp(
            (data_min - data_tmp) / np.abs(data_min)))

    elif method == "percent-absolute-average-deviation":
        obj_value = np.mean(np.abs(data_tmp) * weight_tmp) * 100

    if len(data_tmp) == 0:
        obj_value = np.nan

    if len(data_test) != len(data_tmp):
        tmp = 1 - len(data_tmp) / len(data_test)
        if tmp > nan_ratio:
            obj_value += (len(data_test) - len(data_tmp)) * nan_number
            logger.debug(
                "Values of NaN were removed from objective value calculation, nan_ratio {} > {}, augment obj. value"
                .format(tmp, nan_ratio))
        else:
            logger.debug(
                "Values of NaN were removed from objective value calculation, nan_ratio {} < {}"
                .format(tmp, nan_ratio))

    return obj_value