Ejemplo n.º 1
0
    def load(self):
        # Remove nodes from graph or reset entire default graph
        tf.reset_default_graph()

        # Generate colors for drawing bounding boxes.
        hsv_tuples = [(x / len(self.class_names), 1., 1.) for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors))
        random.seed(10101)  # Fixed seed for consistent colors across runs.
        random.shuffle(self.colors)  # Shuffle colors to decorrelate adjacent classes.
        random.seed(None)  # Reset seed to default.

        # Generate output tensor targets for filtered bounding boxes.
        self.x = tf.placeholder(tf.float32, shape=[None, Input_height, Input_width, channels])
        self.image_shape = tf.placeholder(tf.float32, shape=[2,])
        # self.is_training = tf.placeholder(tf.bool)
        # image_shape = np.array([image.size[0], image.size[1]])  # tf.placeholder(tf.float32, shape=[2,])

        # Generate output tensor targets for filtered bounding boxes.
        # scale1, scale2, scale3 = YOLOv3(self.x, len(self.class_names), trainable=self.trainable, is_training=self.is_training).feature_extractor()
        scale1, scale2, scale3 = YOLOv3(self.x, len(self.class_names), trainable=self.trainable).feature_extractor()
        scale_total = [scale1, scale2, scale3]

        # detect
        # for 3D
        boxes, scores, classes, alphas, hwls = predict(scale_total, self.anchors, len(self.class_names), self.image_shape,
                                         score_threshold=self.threshold, iou_threshold=self.ignore_thresh)

        # Add ops to save and restore all the variables
        saver = tf.train.Saver(var_list=None if self.COCO==True else tf.trainable_variables())

        # Allowing GPU memory growth

        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        sess = tf.Session(config = config)
        sess.run(tf.global_variables_initializer())
        epoch = input('Entrer a check point at epoch:')
        # For the case of COCO
        epoch = epoch if self.COCO == False else 2000
        checkpoint = path + "/save_model/kitti/kitti_l2loss" + ".ckpt-" + str(epoch)
        try:
            aaa = checkpoint + '.meta'
            my_abs_path = Path(aaa).resolve()
        except FileNotFoundError:
            print("Not yet training!")
        else:
            saver.restore(sess, checkpoint)
            print("checkpoint: ", checkpoint)
            print("already training!")

        return boxes, scores, classes, alphas, hwls, sess
Ejemplo n.º 2
0
# tf Graph input
    #graph = tf.Graph()
    #global_step

# input
X = tf.placeholder(tf.float32, [None, 128, 128, 3])
# expected outputs
Y1 = tf.placeholder(tf.float32, shape=[None, Input_shape/32, Input_shape/32, 3, (5+num_classes)])
Y2 = tf.placeholder(tf.float32, shape=[None, Input_shape/16, Input_shape/16, 3, (5+num_classes)])
Y3 = tf.placeholder(tf.float32, shape=[None, Input_shape/8, Input_shape/8, 3, (5+num_classes)])

# Generate output tensor targets for filtered bounding boxes.
scale1, scale2, scale3 = YOLOv3(X, num_classes).feature_extractor()
scale_total = [scale1, scale2, scale3]
# detect
boxes, scores, classes = predict(scale_total, anchors, num_classes, input_shape)

# Label
Y_ = [Y1, Y2, Y3]
# Calculate loss
loss = compute_loss(scale_total, Y_, anchors, num_classes, print_loss=True)

# Optimizer    
optimizer = tf.train.AdamOptimizer(lr).minimize(loss) #, global_step=global_step)

##################################################################################################################
# Init for saving models. They will be saved into a directory named 'checkpoints'.
# Only the last checkpoint is kept.
if not os.path.exists("checkpoints"):
    os.mkdir("checkpoints")
saver = tf.train.Saver()
Ejemplo n.º 3
0
    x_reshape = tf.reshape(X, [-1, Input_shape, Input_shape, 1])
    tf.summary.image("input", x_reshape)
    # STEP 2: Building the graph #######################################################################################
    # Building the graph
    # Generate output tensor targets for filtered bounding boxes.
    scale1, scale2, scale3 = YOLOv3(X, len(classes_data)).feature_extractor()
    scale_total = []
    scale_total.append(scale1)
    scale_total.append(scale2)
    scale_total.append(scale3)

    with tf.name_scope("Loss"):
        # predict boxes, score, classes
        boxes, scores, classes = predict(scale_total,
                                         anchors,
                                         len(classes_data),
                                         S,
                                         score_threshold=threshold,
                                         iou_threshold=ignore_thresh)
        # Label
        y_true = preprocess_true_boxes(Y, 416, anchors, len(classes_data))
        # Calculate loss
        loss = compute_loss(scale_total, y_true, anchors, len(classes_data))
    with tf.name_scope("Optimizer"):
        # optimizer
        learning_rate = 0.001
        decay = 0.0005
        optimizer = tf.train.RMSPropOptimizer(learning_rate,
                                              decay).minimize(loss)
    # STEP 3: Build the evaluation step ################################################################################
    # with tf.name_scope("Accuracy"):
    #     # Model evaluation
Ejemplo n.º 4
0
    def detect_image(self, image):
        start = time.time()

        # Generate colors for drawing bounding boxes.
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
        random.seed(10101)  # Fixed seed for consistent colors across runs.
        random.shuffle(
            self.colors)  # Shuffle colors to decorrelate adjacent classes.
        random.seed(None)  # Reset seed to default.

        if self.is_fixed_size:
            assert self.INPUT_SIZE[0] % 32 == 0, 'Multiples of 32 required'
            assert self.INPUT_SIZE[1] % 32 == 0, 'Multiples of 32 required'
            boxed_image, image_shape = letterbox_image(
                image, tuple(reversed(self.INPUT_SIZE)))
            # boxed_image, image_shape = resize_image(image, tuple(reversed(self.INPUT_SIZE)))
        else:
            new_image_size = (image.width - (image.width % 32),
                              image.height - (image.height % 32))
            boxed_image, image_shape = letterbox_image(image, new_image_size)
            # boxed_image, image_shape = resize_image(image, new_image_size)
        image_data = np.array(boxed_image, dtype='float32')

        print("heights, widths:", image_shape)
        image_data /= 255.
        inputs = np.expand_dims(image_data, 0)  # Add batch dimension. #

        # Generate output tensor targets for filtered bounding boxes.
        x = tf.placeholder(tf.float32,
                           shape=[None, Input_shape, Input_shape, channels])
        # image_shape = np.array([image.size[0], image.size[1]])  # tf.placeholder(tf.float32, shape=[2,])

        # Generate output tensor targets for filtered bounding boxes.
        scale1, scale2, scale3 = YOLOv3(x, len(
            self.class_names)).feature_extractor()
        scale_total = [scale1, scale2, scale3]

        # detect
        boxes, scores, classes = predict(scale_total,
                                         self.anchors,
                                         len(self.class_names),
                                         image_shape,
                                         score_threshold=self.threshold,
                                         iou_threshold=self.ignore_thresh)

        # Add ops to save and restore all the variables.
        saver = tf.train.Saver()

        writer = tf.summary.FileWriter('./graphs', tf.get_default_graph())
        # tensorboard --logdir="./graphs" --port 6006
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            # Restore variables from disk.
            epoch = input('Entrer a check point at epoch(%10=0):')
            checkpoint = "/home/minh/stage/saver_model/model" + str(
                epoch) + ".ckpt"
            try:
                my_abs_path = Path(checkpoint).resolve()
                saver.restore(sess, checkpoint)
            except FileNotFoundError:
                print("Not yet training!")
            else:
                print("already training!")

            out_boxes, out_scores, out_classes = sess.run(
                [boxes, scores, classes], feed_dict={x: inputs})

        writer.close()
        print('Found {} boxes for {}'.format(len(out_boxes), 'img'))

        # Visualisation#################################################################################################
        font = ImageFont.truetype(font='font/FiraMono-Medium.otf',
                                  size=np.floor(3e-2 * image.size[1] +
                                                0.5).astype('int32'))
        thickness = (image.size[0] + image.size[1]) // 400  # do day cua BB

        for i, c in reversed(list(enumerate(out_classes))):
            predicted_class = self.class_names[c]
            box = out_boxes[i]
            score = out_scores[i]

            label = '{} {:.2f}'.format(predicted_class, score)
            draw = ImageDraw.Draw(image)
            label_size = draw.textsize(label, font)

            top, left, bottom, right = box  # y_min, x_min, y_max, x_max
            top = max(0, np.floor(top + 0.5).astype('int32'))
            left = max(0, np.floor(left + 0.5).astype('int32'))
            bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
            right = min(image.size[0], np.floor(right + 0.5).astype('int32'))
            print(label, (left, top),
                  (right, bottom))  # (x_min, y_min), (x_max, y_max)

            if top - label_size[1] >= 0:
                text_origin = np.array([left, top - label_size[1]])
            else:
                text_origin = np.array([left, top + 1])

            # My kingdom for a good redistributable image drawing library.
            for j in range(thickness):
                draw.rectangle([left + j, top + j, right - j, bottom - j],
                               outline=self.colors[c])
            draw.rectangle(
                [tuple(text_origin),
                 tuple(text_origin + label_size)],
                fill=self.colors[c])
            draw.text(text_origin, label, fill=(0, 0, 0), font=font)
            del draw

        end = time.time()
        print(end - start)
        return image