Ejemplo n.º 1
0
def main(image_file):
    detector = Detector(weight_dir=MODEL_WEIGHT_SAVE_DIR,
                        mode=3,
                        min_face_size=24)
    input_img_full_path = TEST_INPUT_IMG_DIR + '/' + image_file
    output_img_full_path = TEST_OUTPUT_IMG_DIR + '/' + image_file
    image = cv2.imread(input_img_full_path)
    bbox, bboxes, landmarks = detector.predict(image)

    print('bboxes-shape---:', bboxes.shape)
    print('landmarks-shape---:', landmarks.shape)
    for bbox in bboxes:
        #print('bbox score--:',bbox[4])
        #cv2.putText(image,str(np.round(bbox[4],2)),(int(bbox[0]),int(bbox[1])),cv2.FONT_HERSHEY_TRIPLEX,1,color=(255,0,255))
        cv2.rectangle(image, (int(bbox[0]), int(bbox[1])),
                      (int(bbox[2]), int(bbox[3])), (0, 0, 255))

    for landmark in landmarks:
        #print('landmark-shape---:',landmark.shape)
        #print('landmark----:',landmark)

        for i in range(0, 5):
            cv2.circle(image,
                       (int(landmark[2 * i]), int(int(landmark[2 * i + 1]))),
                       3, (0, 0, 255))
        #break

    cv2.imwrite(output_img_full_path, image)
    cv2.imshow('yy', image)
    cv2.waitKey(0)
def main(input_net_name):
    net_name = input_net_name
    assert net_name in NET_NAMES
    images_dir = WIDER_FACE_IMG_DIR
    annotation_file = WIDER_FACE_ANNO_FILE
    out_dir = GAN_DATA_ROOT_DIR
    out_dir = '{}/{}'.format(out_dir, net_name)
    
    if net_name == 'r_net':
        mode = 1
    elif net_name == 'o_net':
        mode = 2
    
    #images_path images_jpg bboxes
    dataset = load_widerface_dataset(images_dir, annotation_file)

    detector = Detector(weight_dir= MODEL_WEIGHT_SAVE_DIR, mode=mode)
    
    bboxes_all = []
    
    #p_net 一次测一张图片,注意,其返回可能会有多个,因为图片中可以包含多张面,而且还有图片金字塔
    print('data img len --:',len(dataset['images_jpg']))
    for img_jpg in dataset['images_jpg']:
        _, bboxes, _ = detector.predict(img_jpg)
        bboxes_all.append(bboxes)
    
    bboxes_all = np.array(bboxes_all)
    print('predict over---')
    if not os.path.exists(out_dir):
        os.mkdir(out_dir)
    
    detections_path = os.path.join(out_dir, 'middle_wideface_data_det.pkl')
    with open(detections_path, 'wb') as f:
        pickle.dump({
            'bboxes': bboxes_all,
        }, f)
    
    save_hard_examples(net_name, out_dir, dataset, detections_path)