Ejemplo n.º 1
0
 def match_targets_to_proposals(self, proposal, target):
     match_quality_matrix = boxlist_iou(target, proposal)
     matched_idxs = self.proposal_matcher(match_quality_matrix)
     # Keypoint RCNN needs "labels" and "keypoints "fields for creating the targets
     target = target.copy_with_fields(["labels", "keypoints"])
     # get the targets corresponding GT for each proposal
     # NB: need to clamp the indices because we can have a single
     # GT in the image, and matched_idxs can be -2, which goes
     # out of bounds
     matched_targets = target[matched_idxs.clamp(min=0)]
     matched_targets.add_field("matched_idxs", matched_idxs)
     return matched_targets
Ejemplo n.º 2
0
 def match_targets_to_anchors(self, anchor, target, copied_fields=[]):
     match_quality_matrix = boxlist_iou(target, anchor)
     matched_idxs = self.proposal_matcher(match_quality_matrix)
     # RPN doesn't need any fields from target
     # for creating the labels, so clear them all
     target = target.copy_with_fields(copied_fields)
     # get the targets corresponding GT for each anchor
     # NB: need to clamp the indices because we can have a single
     # GT in the image, and matched_idxs can be -2, which goes
     # out of bounds
     matched_targets = target[matched_idxs.clamp(min_v=0)]
     matched_targets.add_field("matched_idxs", matched_idxs)
     return matched_targets
Ejemplo n.º 3
0
    def get_pos_proposal_indexes(self, locations, box_regression,
                                 matched_idxes, targets):
        locations = jt.contrib.concat(locations, dim=0)
        pos_indexes_for_targets = []
        for im in range(len(targets)):
            pos_indexes_for_targets_per_im = locations.new_ones(
                len(targets[im])).long() * -1
            box_regression_im = [
                box_regression[l][im].detach().view(4, -1).transpose(0, 1) *
                self.fpn_strides[l] for l in range(len(box_regression))
            ]
            box_regression_im = jt.contrib.concat(box_regression_im, dim=0)
            for t_id in range(len(targets[im])):
                valid = matched_idxes[im] == t_id
                if valid.sum() == 0:
                    continue
                valid_location = locations[valid]
                valid_regression = box_regression_im[valid]
                detections = jt.stack([
                    valid_location[:, 0] - valid_regression[:, 0],
                    valid_location[:, 1] - valid_regression[:, 1],
                    valid_location[:, 0] + valid_regression[:, 2],
                    valid_location[:, 1] + valid_regression[:, 3],
                ],
                                      dim=1)
                detect_boxlist = BoxList(detections,
                                         targets[im].size,
                                         mode="xyxy")
                target_boxlist = BoxList(targets[im].bbox[t_id:t_id + 1],
                                         targets[im].size,
                                         mode="xyxy")
                match_quality_matrix = boxlist_iou(detect_boxlist,
                                                   target_boxlist)

                pos_labels_per_target = jt.zeros_like(valid)
                iou_in_target = match_quality_matrix[:, 0]
                pos_in_target = (iou_in_target == iou_in_target.max())
                pos_labels_per_target[valid] = pos_in_target
                pos_indexes_for_targets_per_im[
                    t_id] = pos_labels_per_target.nonzero()[0][0]

            pos_indexes_for_targets.append(pos_indexes_for_targets_per_im)

        return pos_indexes_for_targets
Ejemplo n.º 4
0
def calc_detection_voc_prec_rec(gt_boxlists, pred_boxlists, iou_thresh=0.5):
    """Calculate precision and recall based on evaluation code of PASCAL VOC.
    This function calculates precision and recall of
    predicted bounding boxes obtained from a dataset which has :math:`N`
    images.
    The code is based on the evaluation code used in PASCAL VOC Challenge.
   """
    n_pos = defaultdict(int)
    score = defaultdict(list)
    match = defaultdict(list)
    for gt_boxlist, pred_boxlist in zip(gt_boxlists, pred_boxlists):
        pred_bbox = pred_boxlist.bbox.numpy()
        pred_label = pred_boxlist.get_field("labels").numpy()
        pred_score = pred_boxlist.get_field("scores").numpy()
        gt_bbox = gt_boxlist.bbox.numpy()
        gt_label = gt_boxlist.get_field("labels").numpy()
        gt_difficult = gt_boxlist.get_field("difficult").numpy()

        for l in np.unique(np.concatenate((pred_label, gt_label)).astype(int)):
            pred_mask_l = pred_label == l
            pred_bbox_l = pred_bbox[pred_mask_l]
            pred_score_l = pred_score[pred_mask_l]
            # sort by score
            order = pred_score_l.argsort()[::-1]
            pred_bbox_l = pred_bbox_l[order]
            pred_score_l = pred_score_l[order]

            gt_mask_l = gt_label == l
            gt_bbox_l = gt_bbox[gt_mask_l]
            gt_difficult_l = gt_difficult[gt_mask_l]

            n_pos[l] += np.logical_not(gt_difficult_l).sum()
            score[l].extend(pred_score_l)

            if len(pred_bbox_l) == 0:
                continue
            if len(gt_bbox_l) == 0:
                match[l].extend((0, ) * pred_bbox_l.shape[0])
                continue

            # VOC evaluation follows integer typed bounding boxes.
            pred_bbox_l = pred_bbox_l.copy()
            pred_bbox_l[:, 2:] += 1
            gt_bbox_l = gt_bbox_l.copy()
            gt_bbox_l[:, 2:] += 1
            iou = boxlist_iou(
                BoxList(pred_bbox_l, gt_boxlist.size),
                BoxList(gt_bbox_l, gt_boxlist.size),
            ).numpy()
            gt_index = iou.argmax(axis=1)
            # set -1 if there is no matching ground truth
            gt_index[iou.max(axis=1) < iou_thresh] = -1
            del iou

            selec = np.zeros(gt_bbox_l.shape[0], dtype=bool)
            for gt_idx in gt_index:
                if gt_idx >= 0:
                    if gt_difficult_l[gt_idx]:
                        match[l].append(-1)
                    else:
                        if not selec[gt_idx]:
                            match[l].append(1)
                        else:
                            match[l].append(0)
                    selec[gt_idx] = True
                else:
                    match[l].append(0)

    n_fg_class = max(n_pos.keys()) + 1
    prec = [None] * n_fg_class
    rec = [None] * n_fg_class

    for l in n_pos.keys():
        score_l = np.array(score[l])
        match_l = np.array(match[l], dtype=np.int8)

        order = score_l.argsort()[::-1]
        match_l = match_l[order]

        tp = np.cumsum(match_l == 1)
        fp = np.cumsum(match_l == 0)

        # If an element of fp + tp is 0,
        # the corresponding element of prec[l] is nan.
        prec[l] = tp / (fp + tp)
        # If n_pos[l] is 0, rec[l] is None.
        if n_pos[l] > 0:
            rec[l] = tp / n_pos[l]

    return prec, rec
def evaluate_box_proposals(
    predictions, dataset, thresholds=None, area="all", limit=None
):
    """Evaluate detection proposal recall metrics. This function is a much
    faster alternative to the official COCO API recall evaluation code. However,
    it produces slightly different results.
    """
    # Record max overlap value for each gt box
    # Return vector of overlap values
    areas = {
        "all": 0,
        "small": 1,
        "medium": 2,
        "large": 3,
        "96-128": 4,
        "128-256": 5,
        "256-512": 6,
        "512-inf": 7,
    }
    area_ranges = [
        [0 ** 2, 1e5 ** 2],  # all
        [0 ** 2, 32 ** 2],  # small
        [32 ** 2, 96 ** 2],  # medium
        [96 ** 2, 1e5 ** 2],  # large
        [96 ** 2, 128 ** 2],  # 96-128
        [128 ** 2, 256 ** 2],  # 128-256
        [256 ** 2, 512 ** 2],  # 256-512
        [512 ** 2, 1e5 ** 2],
    ]  # 512-inf
    assert area in areas, "Unknown area range: {}".format(area)
    area_range = area_ranges[areas[area]]
    gt_overlaps = []
    num_pos = 0

    for image_id, prediction in predictions.items():
        original_id = dataset.id_to_img_map[image_id]

        img_info = dataset.get_img_info(image_id)
        image_width = img_info["width"]
        image_height = img_info["height"]
        prediction = prediction.resize((image_width, image_height))

        # sort predictions in descending order
        # TODO maybe remove this and make it explicit in the documentation
        inds = prediction.get_field("objectness").sort(descending=True)[1]
        prediction = prediction[inds]

        ann_ids = dataset.coco.getAnnIds(imgIds=original_id)
        anno = dataset.coco.loadAnns(ann_ids)
        gt_boxes = [obj["bbox"] for obj in anno if obj["iscrowd"] == 0]
        gt_boxes = jt.array(gt_boxes).reshape(-1, 4)  # guard against no boxes
        gt_boxes = BoxList(gt_boxes, (image_width, image_height), mode="xywh").convert(
            "xyxy"
        )
        gt_areas = jt.array([obj["area"] for obj in anno if obj["iscrowd"] == 0])

        if len(gt_boxes) == 0:
            continue

        valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <= area_range[1])
        gt_boxes = gt_boxes[valid_gt_inds]

        num_pos += len(gt_boxes)

        if len(gt_boxes) == 0:
            continue

        if len(prediction) == 0:
            continue

        if limit is not None and len(prediction) > limit:
            prediction = prediction[:limit]

        overlaps = boxlist_iou(prediction, gt_boxes)

        _gt_overlaps = jt.zeros(len(gt_boxes))
        for j in range(min(len(prediction), len(gt_boxes))):
            # find which proposal box maximally covers each gt box
            # and get the iou amount of coverage for each gt box
            max_overlaps, argmax_overlaps = overlaps.max(dim=0)

            # find which gt box is 'best' covered (i.e. 'best' = most iou)
            gt_ovr, gt_ind = max_overlaps.max(dim=0)
            assert gt_ovr >= 0
            # find the proposal box that covers the best covered gt box
            box_ind = argmax_overlaps[gt_ind]
            # record the iou coverage of this gt box
            _gt_overlaps[j] = overlaps[box_ind, gt_ind]
            assert _gt_overlaps[j] == gt_ovr
            # mark the proposal box and the gt box as used
            overlaps[box_ind, :] = -1
            overlaps[:, gt_ind] = -1

        # append recorded iou coverage level
        gt_overlaps.append(_gt_overlaps)
    gt_overlaps = jt.contrib.concat(gt_overlaps, dim=0)
    _,gt_overlaps = jt.argsort(gt_overlaps)

    if thresholds is None:
        step = 0.05
        thresholds = jt.array(np.arange(0.5, 0.95 + 1e-5, step)).float32()
    recalls = jt.zeros(thresholds.shape,dtype=thresholds.dtype)
    # compute recall for each iou threshold
    for i, t in enumerate(thresholds):
        recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos)
    # ar = 2 * np.trapz(recalls, thresholds)
    ar = recalls.mean()
    return {
        "ar": ar,
        "recalls": recalls,
        "thresholds": thresholds,
        "gt_overlaps": gt_overlaps,
        "num_pos": num_pos,
    }
Ejemplo n.º 6
0
 def calcIoU(box1, box2, image_size=(600, 600)):
     boxlist1 = BoxList(box1, image_size)
     boxlist2 = BoxList(box2, image_size)
     iou = boxlist_iou(boxlist1, boxlist2)
     return iou