Ejemplo n.º 1
0
Archivo: misc.py Proyecto: ofmla/devito
    def callback(self, clusters, prefix):
        if not prefix or len(clusters) == 1:
            return clusters

        d = prefix[-1].dim

        # Do not waste time if definitely illegal
        if any(SEQUENTIAL in c.properties[d] for c in clusters):
            return clusters

        # Do not waste time if definitely nothing to do
        if all(len(prefix) == len(c.itintervals) for c in clusters):
            return clusters

        # Analyze and abort if fissioning would break a dependence
        scope = Scope(flatten(c.exprs for c in clusters))
        if any(d._defines & dep.cause or dep.is_reduce(d)
               for dep in scope.d_all_gen()):
            return clusters

        processed = []
        for k, g in groupby(clusters, key=lambda c: self._key(c, len(prefix))):
            it, _ = k
            group = list(g)

            if any(SEQUENTIAL in c.properties[it.dim] for c in group):
                # Heuristic: no gain from fissioning if unable to ultimately
                # increase the number of collapsable iteration spaces, hence give up
                processed.extend(group)
            else:
                stamp = Stamp()
                for c in group:
                    ispace = c.ispace.lift(d, stamp)
                    dspace = c.dspace.lift(d, stamp)
                    processed.append(c.rebuild(ispace=ispace, dspace=dspace))

        return processed
Ejemplo n.º 2
0
    def callback(self, clusters, prefix, backlog=None, known_break=None):
        if not prefix:
            return clusters

        known_break = known_break or set()
        backlog = backlog or []

        # Take the innermost Dimension -- no other Clusters other than those in
        # `clusters` are supposed to share it
        candidates = prefix[-1].dim._defines

        scope = self._fetch_scope(clusters)

        # Handle the nastiest case -- ambiguity due to the presence of both a
        # flow- and an anti-dependence.
        #
        # Note: in most cases, `scope.d_anti.cause == {}` -- either because
        # `scope.d_anti == {}` or because the few anti dependences are not carried
        # in any Dimension. We exploit this observation so that we only compute
        # `d_flow`, which instead may be expensive, when strictly necessary
        maybe_break = scope.d_anti.cause & candidates
        if len(clusters) > 1 and maybe_break:
            require_break = scope.d_flow.cause & maybe_break
            if require_break:
                backlog = [clusters[-1]] + backlog
                # Try with increasingly smaller ClusterGroups until the ambiguity is gone
                return self.callback(clusters[:-1], prefix, backlog,
                                     require_break)

        # Schedule Clusters over different IterationSpaces if this increases parallelism
        for i in range(1, len(clusters)):
            if self._break_for_parallelism(scope, candidates, i):
                return self.callback(clusters[:i], prefix,
                                     clusters[i:] + backlog,
                                     candidates | known_break)

        # Compute iteration direction
        idir = {
            d: Backward
            for d in candidates if d.root in scope.d_anti.cause
        }
        if maybe_break:
            idir.update({
                d: Forward
                for d in candidates if d.root in scope.d_flow.cause
            })
        idir.update({d: Forward for d in candidates if d not in idir})

        # Enforce iteration direction on each Cluster
        processed = []
        for c in clusters:
            ispace = IterationSpace(c.ispace.intervals, c.ispace.sub_iterators,
                                    {
                                        **c.ispace.directions,
                                        **idir
                                    })
            processed.append(c.rebuild(ispace=ispace))

        if not backlog:
            return processed

        # Handle the backlog -- the Clusters characterized by flow- and anti-dependences
        # along one or more Dimensions
        idir = {d: Any for d in known_break}
        stamp = Stamp()
        for i, c in enumerate(list(backlog)):
            ispace = IterationSpace(
                c.ispace.intervals.lift(known_break, stamp),
                c.ispace.sub_iterators, {
                    **c.ispace.directions,
                    **idir
                })
            backlog[i] = c.rebuild(ispace=ispace)

        return processed + self.callback(backlog, prefix)
Ejemplo n.º 3
0
 def lift(self, v=None):
     if v is None:
         v = Stamp()
     return Interval(self.dim, self.lower, self.upper, v)
Ejemplo n.º 4
0
def lower_aliases(aliases, meta, maxpar):
    """
    Create a Schedule from an AliasList.
    """
    stampcache = {}
    dmapper = {}
    processed = []
    for a in aliases:
        imapper = {
            **{i.dim: i
               for i in a.intervals},
            **{
                i.dim.parent: i
                for i in a.intervals if i.dim.is_NonlinearDerived
            }
        }

        intervals = []
        writeto = []
        sub_iterators = {}
        indicess = [[] for _ in a.distances]
        for i in meta.ispace:
            try:
                interval = imapper[i.dim]
            except KeyError:
                if i.dim in a.free_symbols:
                    # Special case: the Dimension appears within the alias but
                    # not as an Indexed index. Then, it needs to be addeed to
                    # the `writeto` region too
                    interval = i
                else:
                    # E.g., `x0_blk0` or (`a[y_m+1]` => `y not in imapper`)
                    intervals.append(i)
                    continue

            if not (writeto or interval != interval.zero() or
                    (maxpar and SEQUENTIAL not in meta.properties.get(i.dim))):
                # The alias doesn't require a temporary Dimension along i.dim
                intervals.append(i)
                continue

            assert not i.dim.is_NonlinearDerived

            # `i.dim` is necessarily part of the write-to region, so
            # we have to adjust the Interval's stamp. For example, consider
            # `i=x[0,0]<1>` and `interval=x[-4,4]<0>`; here we need to
            # use `<1>` as stamp, which is what appears in `ispace`
            interval = interval.lift(i.stamp)

            # We further bump the interval stamp if we were requested to trade
            # fusion for more collapse-parallelism
            if maxpar:
                stamp = stampcache.setdefault(interval.dim, Stamp())
                interval = interval.lift(stamp)

            writeto.append(interval)
            intervals.append(interval)

            if i.dim.is_Incr:
                # Suitable IncrDimensions must be used to avoid OOB accesses.
                # E.g., r[xs][ys][z] => both `xs` and `ys` must be initialized such
                # that all accesses are within bounds. This requires traversing the
                # hierarchy of IncrDimensions to set `xs` (`ys`) in a way that
                # consecutive blocks access consecutive regions in `r` (e.g.,
                # `xs=x0_blk1-x0_blk0` with `blocklevels=2`; `xs=0` with
                # `blocklevels=1`, that is it degenerates in this case)
                try:
                    d = dmapper[i.dim]
                except KeyError:
                    dd = i.dim.parent
                    assert dd.is_Incr
                    if dd.parent.is_Incr:
                        # An IncrDimension in between IncrDimensions
                        m = i.dim.symbolic_min - i.dim.parent.symbolic_min
                    else:
                        m = 0
                    d = dmapper[i.dim] = IncrDimension("%ss" % i.dim.name,
                                                       i.dim, m,
                                                       dd.symbolic_size, 1,
                                                       dd.step)
                sub_iterators[i.dim] = d
            else:
                d = i.dim

            # Given the iteration `interval`, lower distances to indices
            for distance, indices in zip(a.distances, indicess):
                try:
                    indices.append(d - interval.lower + distance[interval.dim])
                except TypeError:
                    indices.append(d)

        # The alias write-to space
        writeto = IterationSpace(IntervalGroup(writeto), sub_iterators)

        # The alias iteration space
        ispace = IterationSpace(
            IntervalGroup(intervals, meta.ispace.relations),
            meta.ispace.sub_iterators, meta.ispace.directions)
        ispace = ispace.augment(sub_iterators)

        processed.append(
            ScheduledAlias(a.pivot, writeto, ispace, a.aliaseds, indicess,
                           a.score))

    # The [ScheduledAliases] must be ordered so as to reuse as many of the
    # `ispace`'s IterationIntervals as possible in order to honor the
    # write-to region. Another fundamental reason for ordering is to ensure
    # deterministic code generation
    processed = sorted(processed, key=lambda i: cit(meta.ispace, i.ispace))

    return Schedule(*processed, dmapper=dmapper)
Ejemplo n.º 5
0
from cached_property import cached_property
from sympy import Expr

from devito.ir.support.vector import Vector, vmin, vmax
from devito.tools import (PartialOrderTuple, Stamp, as_list, as_tuple,
                          filter_ordered, frozendict, is_integer, toposort)
from devito.types import Dimension, ModuloDimension

__all__ = [
    'NullInterval', 'Interval', 'IntervalGroup', 'IterationSpace', 'DataSpace',
    'Forward', 'Backward', 'Any'
]

# The default Stamp, used by all new Intervals
S0 = Stamp()


class AbstractInterval(object):
    """
    An abstract representation of an iterated closed interval on Z.
    """

    __metaclass__ = abc.ABCMeta

    is_Null = False
    is_Defined = False

    def __init__(self, dim, stamp=S0):
        self.dim = dim
        self.stamp = stamp