def __init__(self, block, layers, num_classes=1000, using_moving_average=True, using_bn=True):
        self.inplanes = 64
        self.using_moving_average=using_moving_average
        self.using_bn = using_bn
        super(ResNetV2SN, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.sn1 = SwitchNorm2d(64, using_moving_average=self.using_moving_average, using_bn=self.using_bn)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.sn_out = SwitchNorm2d(512 * block.expansion, using_moving_average=self.using_moving_average, using_bn=self.using_bn)
        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.drouput = nn.Dropout(p=0.5)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, SwitchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
 def __init__(self, inplanes, planes, stride=1, downsample=None, using_moving_average=True, using_bn=True,  last_gamma=True):
     super(BasicBlock, self).__init__()
     self.conv1 = conv3x3(inplanes, planes, stride)
     self.sn1 = SwitchNorm2d(planes, using_moving_average=using_moving_average, using_bn=using_bn)
     self.relu = nn.ReLU(inplace=True)
     self.conv2 = conv3x3(planes, planes)
     self.sn2 = SwitchNorm2d(planes, using_moving_average=using_moving_average, using_bn=using_bn, last_gamma=last_gamma)
     self.downsample = downsample
     self.stride = stride
 def __init__(self, inplanes, planes, stride=1, downsample=None, using_moving_average=True, using_bn=True, last_gamma=True):
     super(Bottleneck, self).__init__()
     self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
     self.sn1 = SwitchNorm2d(planes, using_moving_average=using_moving_average, using_bn=using_bn)
     self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                            padding=1, bias=False)
     self.sn2 = SwitchNorm2d(planes, using_moving_average=using_moving_average, using_bn=using_bn)
     self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
     self.sn3 = SwitchNorm2d(planes * 4, using_moving_average=using_moving_average, using_bn=using_bn, last_gamma=last_gamma)
     self.relu = nn.ReLU(inplace=True)
     self.downsample = downsample
     self.stride = stride
    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                SwitchNorm2d(planes * block.expansion, using_moving_average=self.using_moving_average,
                                using_bn=self.using_bn),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample, using_moving_average=self.using_moving_average,
                            using_bn=self.using_bn, last_gamma=self.last_gamma))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, using_moving_average=self.using_moving_average,
                                using_bn=self.using_bn, last_gamma=self.last_gamma))

        return nn.Sequential(*layers)
 def NormFunc(*args, **kwargs):
     return SwitchNorm2d(*args, **kwargs, eps=2e-5, momentum=0.9)