Ejemplo n.º 1
0
def cauchy_pt(g, hess, delta):
    # General expression for the Cauchy point
    crv = np.dot(g, right_multiply_hessian(hess, g))
    gnorm = np.linalg.norm(g)
    if crv <= 0.0:
        alpha = delta / gnorm
    else:
        alpha = min(delta / gnorm, gnorm**2 / crv)
    s = -alpha * g
    red = calculate_model_value(g, hess, s)
    crvmin = np.dot(s, right_multiply_hessian(hess, s)) / np.dot(s, s)
    if crvmin < 0.0:
        crvmin = -1.0
    return s, red, crvmin
Ejemplo n.º 2
0
 def runTest(self):
     n = 3
     g = np.array([1.0, 0.0, 1.0])
     H = np.array([[1.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 2.0]])
     Delta = 2.0
     hess = to_upper_triangular_vector(H)
     xopt = np.ones((n, ))  # trying nonzero (since bounds inactive)
     sl = xopt + np.array([-0.5, -10.0, -10.0])
     su = xopt + np.array([10.0, 10.0, 10.0])
     d, gnew, crvmin = trsbox(xopt, g, hess, sl, su, Delta)
     true_d = np.array([-1.0, 0.0, -0.5])
     est_min = calculate_model_value(g, hess, d)
     true_min = calculate_model_value(g, hess, true_d)
     # Hope to get actual correct answer for internal minimum?
     # self.assertTrue(np.all(d == true_d), 'Wrong answer')
     # self.assertAlmostEqual(est_min, true_min, 'Wrong min value')
     s_cauchy, red_cauchy, crvmin_cauchy = cauchy_pt_box(
         g, hess, Delta, sl - xopt, su - xopt)
     # print(s_cauchy)
     # print(d)
     self.assertTrue(est_min <= red_cauchy, 'Cauchy reduction not achieved')
     self.assertTrue(np.all(gnew == g + right_multiply_hessian(hess, d)),
                     'Wrong gnew')
     print(crvmin)
     self.assertAlmostEqual(crvmin, -1.0, 'Wrong crvmin')
Ejemplo n.º 3
0
def cauchy_pt_box(g, hess, delta, lower, upper):
    # General expression for the Cauchy point, lower <= s <= upper
    crv = np.dot(g, right_multiply_hessian(hess, g))
    gnorm = np.linalg.norm(g)
    if crv <= 0.0:
        alpha = delta / gnorm
    else:
        alpha = min(delta / gnorm, gnorm**2 / crv)
    # print("alpha = %g" % alpha)
    # Then cap with bounds:
    for i in range(len(g)):
        if g[i] > 0:  # s[i] negative, will hit lower
            alpha = min(alpha, -lower[i] / g[i])
        elif g[i] < 0:  # s[i] positive, will hit upper
            alpha = min(alpha, -upper[i] / g[i])
        # print("alpha = %g after i=%g" % (alpha, i))
    s = -alpha * g
    red = calculate_model_value(g, hess, s)
    crvmin = np.dot(s, right_multiply_hessian(hess, s)) / np.dot(s, s)
    if crvmin < 0.0:
        crvmin = -1.0
    return s, red, crvmin
Ejemplo n.º 4
0
 def runTest(self):
     n = 3
     g = np.array([1.0, 0.0, 1.0])
     H = np.array([[1.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 2.0]])
     Delta = 5.0 / 12.0
     hess = to_upper_triangular_vector(H)
     xopt = np.zeros((n, ))
     sl = -1e20 * np.ones((n, ))
     su = 1e20 * np.ones((n, ))
     d, gnew, crvmin = trsbox(xopt, g, hess, sl, su, Delta)
     true_d = np.array([-1.0 / 3.0, 0.0, -0.25])
     est_min = calculate_model_value(g, hess, d)
     true_min = calculate_model_value(g, hess, true_d)
     # Hope to get actual correct answer
     # self.assertTrue(np.all(d == true_d), 'Wrong answer')
     # self.assertAlmostEqual(est_min, true_min, 'Wrong min value')
     s_cauchy, red_cauchy, crvmin_cauchy = cauchy_pt(g, hess, Delta)
     self.assertTrue(est_min <= red_cauchy, 'Cauchy reduction not achieved')
     self.assertTrue(np.all(gnew == g + right_multiply_hessian(hess, d)),
                     'Wrong gnew')
     self.assertAlmostEqual(crvmin, 0.0, 'Wrong crvmin')