Ejemplo n.º 1
0
    def tst_conservation_of_counts(self):

        from scitbx import matrix
        from random import uniform, seed
        from dials.algorithms.profile_model.gaussian_rs import CoordinateSystem
        from dials.algorithms.profile_model.gaussian_rs import transform
        from scitbx.array_family import flex

        seed(0)

        assert (len(self.detector) == 1)

        s0 = self.beam.get_s0()
        m2 = self.gonio.get_rotation_axis()
        s0_length = matrix.col(self.beam.get_s0()).length()

        # Create an s1 map
        s1_map = transform.beam_vector_map(self.detector[0], self.beam, True)

        for i in range(100):

            # Get random x, y, z
            x = uniform(300, 1800)
            y = uniform(300, 1800)
            z = uniform(500, 600)

            # Get random s1, phi, panel
            s1 = matrix.col(self.detector[0].get_pixel_lab_coord(
                (x, y))).normalize() * s0_length
            phi = self.scan.get_angle_from_array_index(z, deg=False)
            panel = 0

            # Calculate the bounding box
            bbox = self.calculate_bbox(s1, z, panel)
            x0, x1, y0, y1, z0, z1 = bbox

            # Create the coordinate system
            cs = CoordinateSystem(m2, s0, s1, phi)
            if abs(cs.zeta()) < 0.1:
                continue

            # The grid index generator
            step_size = self.delta_divergence / self.grid_size
            grid_index = transform.GridIndexGenerator(cs, x0, y0,
                                                      (step_size, step_size),
                                                      self.grid_size, s1_map)

            # Create the image
            #image = flex.double(flex.grid(z1 - z0, y1 - y0, x1 - x0), 1)
            image = gaussian((z1 - z0, y1 - y0, x1 - x0), 10.0,
                             (z - z0, y - y0, x - x0), (2.0, 2.0, 2.0))
            mask = flex.bool(flex.grid(image.all()), False)
            for j in range(y1 - y0):
                for i in range(x1 - x0):
                    inside = False
                    gx00, gy00 = grid_index(j, i)
                    gx01, gy01 = grid_index(j, i + 1)
                    gx10, gy10 = grid_index(j + 1, i)
                    gx11, gy11 = grid_index(j + 1, i + 1)
                    mingx = min([gx00, gx01, gx10, gx11])
                    maxgx = max([gx00, gx01, gx10, gx11])
                    mingy = min([gy00, gy01, gy10, gy11])
                    maxgy = max([gy00, gy01, gy10, gy11])
                    if (mingx >= 0 and maxgx < 2 * self.grid_size + 1
                            and mingy >= 0 and maxgy < 2 * self.grid_size + 1):
                        inside = True
                    for k in range(1, z1 - z0 - 1):
                        mask[k, j, i] = inside

            # Transform the image to the grid
            transformed = transform.TransformForwardNoModel(
                self.spec, cs, bbox, 0, image.as_double(), mask)
            grid = transformed.profile()

            # Get the sums and ensure they're the same
            eps = 1e-7
            sum_grid = flex.sum(grid)
            sum_image = flex.sum(flex.double(flex.select(image, flags=mask)))
            assert (abs(sum_grid - sum_image) <= eps)

            mask = flex.bool(flex.grid(image.all()), True)
            transformed = transform.TransformForwardNoModel(
                self.spec, cs, bbox, 0, image.as_double(), mask)
            grid = transformed.profile()

            # Boost the bbox to make sure all intensity is included
            x0, x1, y0, y1, z0, z1 = bbox
            bbox2 = (x0 - 10, x1 + 10, y0 - 10, y1 + 10, z0 - 10, z1 + 10)

            # Do the reverse transform
            transformed = transform.TransformReverseNoModel(
                self.spec, cs, bbox2, 0, grid)
            image2 = transformed.profile()

            # Check the sum of pixels are the same
            sum_grid = flex.sum(grid)
            sum_image = flex.sum(image2)
            assert (abs(sum_grid - sum_image) <= eps)

            # Do the reverse transform
            transformed = transform.TransformReverseNoModel(
                self.spec, cs, bbox, 0, grid)
            image2 = transformed.profile()

            from dials.algorithms.statistics import pearson_correlation_coefficient
            cc = pearson_correlation_coefficient(image.as_1d().as_double(),
                                                 image2.as_1d())
            assert (cc >= 0.99)
            # if cc < 0.99:
            #   print cc, bbox
            #   from matplotlib import pylab
            # pylab.plot(image.as_numpy_array()[(z1-z0)/2,(y1-y0)/2,:])
            # pylab.show()
            # pylab.plot(image2.as_numpy_array()[(z1-z0)/2,(y1-y0)/2,:])
            # pylab.show()
            # pylab.plot((image.as_double()-image2).as_numpy_array()[(z1-z0)/2,(y1-y0)/2,:])
            # pylab.show()

        # Test passed
        print 'OK'
Ejemplo n.º 2
0
def test_forward_no_model(dials_data):
    sequence = load.imageset(
        dials_data("centroid_test_data").join("sweep.json").strpath)

    # Get the models
    beam = sequence.get_beam()
    detector = sequence.get_detector()
    gonio = sequence.get_goniometer()
    scan = sequence.get_scan()
    scan.set_image_range((0, 1000))

    # Set some parameters
    sigma_divergence = beam.get_sigma_divergence(deg=False)
    mosaicity = 0.157 * math.pi / 180
    n_sigma = 3
    grid_size = 20
    delta_divergence = n_sigma * sigma_divergence

    step_size = delta_divergence / grid_size
    delta_divergence2 = delta_divergence + step_size * 0.5
    delta_mosaicity = n_sigma * mosaicity

    # Create the bounding box calculator
    calculate_bbox = BBoxCalculator3D(beam, detector, gonio, scan,
                                      delta_divergence2, delta_mosaicity)

    # Initialise the transform
    spec = transform.TransformSpec(beam, detector, gonio, scan,
                                   sigma_divergence, mosaicity, n_sigma + 1,
                                   grid_size)

    # tst_conservation_of_counts(self):

    random.seed(0)

    assert len(detector) == 1

    s0 = beam.get_s0()
    m2 = gonio.get_rotation_axis()
    s0_length = matrix.col(beam.get_s0()).length()

    # Create an s1 map
    s1_map = transform.beam_vector_map(detector[0], beam, True)

    for i in range(100):

        # Get random x, y, z
        x = random.uniform(300, 1800)
        y = random.uniform(300, 1800)
        z = random.uniform(500, 600)

        # Get random s1, phi, panel
        s1 = matrix.col(detector[0].get_pixel_lab_coord(
            (x, y))).normalize() * s0_length
        phi = scan.get_angle_from_array_index(z, deg=False)
        panel = 0

        # Calculate the bounding box
        bbox = calculate_bbox(s1, z, panel)
        x0, x1, y0, y1, z0, z1 = bbox

        # Create the coordinate system
        cs = CoordinateSystem(m2, s0, s1, phi)
        if abs(cs.zeta()) < 0.1:
            continue

        # The grid index generator
        step_size = delta_divergence / grid_size
        grid_index = transform.GridIndexGenerator(cs, x0, y0,
                                                  (step_size, step_size),
                                                  grid_size, s1_map)

        # Create the image
        # image = flex.double(flex.grid(z1 - z0, y1 - y0, x1 - x0), 1)
        image = gaussian((z1 - z0, y1 - y0, x1 - x0), 10.0,
                         (z - z0, y - y0, x - x0), (2.0, 2.0, 2.0))
        mask = flex.bool(flex.grid(image.all()), False)
        for j in range(y1 - y0):
            for i in range(x1 - x0):
                inside = False
                gx00, gy00 = grid_index(j, i)
                gx01, gy01 = grid_index(j, i + 1)
                gx10, gy10 = grid_index(j + 1, i)
                gx11, gy11 = grid_index(j + 1, i + 1)
                mingx = min([gx00, gx01, gx10, gx11])
                maxgx = max([gx00, gx01, gx10, gx11])
                mingy = min([gy00, gy01, gy10, gy11])
                maxgy = max([gy00, gy01, gy10, gy11])
                if (mingx >= 0 and maxgx < 2 * grid_size + 1 and mingy >= 0
                        and maxgy < 2 * grid_size + 1):
                    inside = True
                for k in range(1, z1 - z0 - 1):
                    mask[k, j, i] = inside

        # Transform the image to the grid
        transformed = transform.TransformForwardNoModel(
            spec, cs, bbox, 0, image.as_double(), mask)
        grid = transformed.profile()

        # Get the sums and ensure they're the same
        eps = 1e-7
        sum_grid = flex.sum(grid)
        sum_image = flex.sum(flex.double(flex.select(image, flags=mask)))
        assert abs(sum_grid - sum_image) <= eps

        mask = flex.bool(flex.grid(image.all()), True)
        transformed = transform.TransformForwardNoModel(
            spec, cs, bbox, 0, image.as_double(), mask)
        grid = transformed.profile()

        # Boost the bbox to make sure all intensity is included
        x0, x1, y0, y1, z0, z1 = bbox
        bbox2 = (x0 - 10, x1 + 10, y0 - 10, y1 + 10, z0 - 10, z1 + 10)

        # Do the reverse transform
        transformed = transform.TransformReverseNoModel(
            spec, cs, bbox2, 0, grid)
        image2 = transformed.profile()

        # Check the sum of pixels are the same
        sum_grid = flex.sum(grid)
        sum_image = flex.sum(image2)
        assert abs(sum_grid - sum_image) <= eps

        # Do the reverse transform
        transformed = transform.TransformReverseNoModel(
            spec, cs, bbox, 0, grid)
        image2 = transformed.profile()

        from dials.algorithms.statistics import pearson_correlation_coefficient

        cc = pearson_correlation_coefficient(image.as_1d().as_double(),
                                             image2.as_1d())
        assert cc >= 0.99