Ejemplo n.º 1
0
Archivo: mp.py Proyecto: rjgildea/dials
def parallel_map(
    func,
    iterable,
    processes=1,
    nslots=1,
    method=None,
    asynchronous=True,
    callback=None,
    preserve_order=True,
    job_category="low",
):
    """
    A wrapper function to call either drmaa or easy_mp to do a parallel map
    calculation. This function is setup so that in each case we can select
    the number of cores on a machine
    """
    from dials.util.cluster_map import cluster_map as drmaa_parallel_map

    warnings.warn(
        "The dials.util.parallel_map function is deprecated",
        UserWarning,
        stacklevel=2,
    )

    if method == "drmaa":
        return drmaa_parallel_map(
            func=func,
            iterable=iterable,
            callback=callback,
            nslots=nslots,
            njobs=processes,
            job_category=job_category,
        )
    else:
        qsub_command = "qsub -pe smp %d" % nslots
        return libtbx.easy_mp.parallel_map(
            func=func,
            iterable=iterable,
            callback=callback,
            method=method,
            processes=processes,
            qsub_command=qsub_command,
            asynchronous=asynchronous,
            preserve_order=preserve_order,
            preserve_exception_message=True,
        )
Ejemplo n.º 2
0
def parallel_map(func,
                 iterable,
                 processes=1,
                 nslots=1,
                 method=None,
                 asynchronous=True,
                 callback=None,
                 preserve_order=True,
                 preserve_exception_message=True,
                 job_category="low"):
    '''
  A wrapper function to call either drmaa or easy_mp to do a parallel map
  calculation. This function is setup so that in each case we can select
  the number of cores on a machine

  '''
    from dials.util.cluster_map import cluster_map as drmaa_parallel_map
    from libtbx.easy_mp import parallel_map as easy_mp_parallel_map
    if method == "drmaa":
        return drmaa_parallel_map(func=func,
                                  iterable=iterable,
                                  callback=callback,
                                  nslots=nslots,
                                  njobs=processes,
                                  job_category=job_category)
    else:
        qsub_command = 'qsub -pe smp %d' % nslots
        return easy_mp_parallel_map(
            func=func,
            iterable=iterable,
            callback=callback,
            method=method,
            processes=processes,
            qsub_command=qsub_command,
            asynchronous=asynchronous,
            preserve_order=preserve_order,
            preserve_exception_message=preserve_exception_message)
Ejemplo n.º 3
0
Archivo: mp.py Proyecto: rjgildea/dials
def multi_node_parallel_map(
    func,
    iterable,
    njobs=1,
    nproc=1,
    cluster_method=None,
    asynchronous=True,
    callback=None,
    preserve_order=True,
):
    """
    A wrapper function to call a function using multiple cluster nodes and with
    multiple processors on each node
    """

    # The function to all on the cluster
    cluster_func = __cluster_function_wrapper(
        func=func,
        nproc=nproc,
        asynchronous=asynchronous,
        preserve_order=preserve_order,
    )

    # Create the cluster iterable
    cluster_iterable = _iterable_grouper(iterable, nproc)

    # Create the cluster callback
    if callback is not None:
        cluster_callback = _iterable_wrapper(callback)
    else:
        cluster_callback = None

    # Do the parallel map on the cluster
    # Call either drmaa or easy_mp to do a parallel map calculation.
    # This function is set up so that in each case we can select
    # the number of cores on a machine
    if cluster_method == "drmaa":
        from dials.util.cluster_map import cluster_map as drmaa_parallel_map

        result = drmaa_parallel_map(
            func=cluster_func,
            iterable=cluster_iterable,
            callback=cluster_callback,
            nslots=nproc,
            njobs=njobs,
            job_category="low",
        )
    else:
        result = libtbx.easy_mp.parallel_map(
            func=cluster_func,
            iterable=cluster_iterable,
            callback=cluster_callback,
            method=cluster_method,
            processes=njobs,
            qsub_command=f"qsub -pe smp {nproc}",
            asynchronous=asynchronous,
            preserve_order=preserve_order,
            preserve_exception_message=True,
        )

    # return result
    return [item for rlist in result for item in rlist]