def test_accountant(self):
        from diffprivlib.accountant import BudgetAccountant

        acc = BudgetAccountant()
        X = np.linspace(-1, 1, 100)
        y = X.copy()
        X = X[:, np.newaxis]

        clf = LinearRegression(epsilon=2,
                               fit_intercept=False,
                               bounds_X=(-1, 1),
                               bounds_y=(-1, 1),
                               accountant=acc)
        clf.fit(X, y)
        self.assertEqual((2, 0), acc.total())

        with BudgetAccountant(3, 0) as acc2:
            clf = LinearRegression(epsilon=2,
                                   fit_intercept=False,
                                   bounds_X=(-1, 1),
                                   bounds_y=(-1, 1))
            clf.fit(X, y)
            self.assertEqual((2, 0), acc2.total())

            with self.assertRaises(BudgetError):
                clf.fit(X, y)
    def test_same_results(self):
        from sklearn import datasets
        from sklearn.model_selection import train_test_split
        from sklearn import linear_model

        dataset = datasets.load_iris()
        X_train, X_test, y_train, y_test = train_test_split(dataset.data,
                                                            dataset.target,
                                                            test_size=0.2)

        clf = LinearRegression(epsilon=float("inf"),
                               bounds_X=([4.3, 2.0, 1.0,
                                          0.1], [7.9, 4.4, 6.9, 2.5]),
                               bounds_y=(0, 2))
        clf.fit(X_train, y_train)

        predict1 = clf.predict(X_test)

        clf2 = linear_model.LinearRegression()
        clf2.fit(X_train, y_train)

        predict2 = clf2.predict(X_test)

        self.assertTrue(np.allclose(predict1, predict2))
        self.assertTrue(np.allclose(clf.coef_, clf2.coef_))
        self.assertTrue(np.allclose(clf._residues, clf2._residues))
    def test_multiple_targets(self):
        from sklearn.linear_model import LinearRegression as sk_LinearRegression
        X = np.linspace(-1, 1, 1000)
        y = np.vstack((X.copy(), X.copy(), X.copy(), X.copy())).T
        X = X[:, np.newaxis]

        clf_dp = LinearRegression(epsilon=2,
                                  fit_intercept=False,
                                  bounds_X=(-1, 1),
                                  bounds_y=(-1, 1))

        with self.assertRaises(ValueError):
            clf_dp.fit(X, y.T)

        clf_dp.fit(X, y)

        clf_sk = sk_LinearRegression(fit_intercept=False)
        clf_sk.fit(X, y)

        x0 = np.array([[0.5]])

        self.assertEqual(clf_dp.coef_.shape, clf_sk.coef_.shape)
        self.assertEqual(clf_dp.predict(x0).shape, clf_sk.predict(x0).shape)

        clf_dp2 = LinearRegression(epsilon=2,
                                   fit_intercept=True,
                                   bounds_X=(-1, 1),
                                   bounds_y=(-1, 1)).fit(X, y)
        self.assertIsNotNone(clf_dp2)
        self.assertEqual(clf_dp2.intercept_.shape, (4, ))
        self.assertEqual(clf_dp2.coef_.shape, clf_sk.coef_.shape)
        self.assertEqual(clf_dp2.predict(x0).shape, clf_sk.predict(x0).shape)
    def test_large_norm(self):
        X = np.array([
            0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 1.75, 2.00, 2.25, 2.50, 2.75,
            3.00, 3.25, 3.50, 4.00, 4.25, 4.50, 4.75, 5.00, 5.50
        ])
        y = np.array(
            [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1])
        X = X[:, np.newaxis]

        clf = LinearRegression(data_norm=1.0, fit_intercept=False)

        self.assertIsNotNone(clf.fit(X, y))
    def test_simple(self):
        X = np.linspace(-1, 1, 1000)
        y = X.copy()
        X = X[:, np.newaxis]

        clf = LinearRegression(epsilon=2, data_norm=1, fit_intercept=False)
        clf.fit(X, y)

        self.assertIsNotNone(clf)
        self.assertAlmostEqual(clf.predict(np.array([0.5]).reshape(-1, 1))[0],
                               0.5,
                               places=3)
    def test_no_bounds_y(self):
        clf = LinearRegression(bounds_X=(0, 5))

        X = np.array([
            0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 1.75, 2.00, 2.25, 2.50, 2.75,
            3.00, 3.25, 3.50, 4.00, 4.25, 4.50, 4.75, 5.00, 5.50
        ])
        y = np.array(
            [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1])
        X = X[:, np.newaxis]

        with self.assertWarns(PrivacyLeakWarning):
            clf.fit(X, y)
    def test_sample_weight_warning(self):
        clf = LinearRegression(bounds_X=(0, 5), bounds_y=(0, 1))

        X = np.array([
            0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 1.75, 2.00, 2.25, 2.50, 2.75,
            3.00, 3.25, 3.50, 4.00, 4.25, 4.50, 4.75, 5.00, 5.50
        ])
        y = np.array(
            [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1])
        X = X[:, np.newaxis]

        with self.assertWarns(DiffprivlibCompatibilityWarning):
            clf.fit(X, y, sample_weight=np.ones_like(y))
Ejemplo n.º 8
0
    def test_large_norm(self):
        X = np.array([
            0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 1.75, 2.00, 2.25, 2.50, 2.75,
            3.00, 3.25, 3.50, 4.00, 4.25, 4.50, 4.75, 5.00, 5.50
        ])
        y = np.array(
            [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1])
        X = X[:, np.newaxis]

        clf = LinearRegression(data_norm=1.0)

        with self.assertWarns(PrivacyLeakWarning):
            clf.fit(X, y)
    def test_copy(self):
        X = np.linspace(-1, 1, 1000)
        y = X.copy()
        X = X[:, np.newaxis]

        clf = LinearRegression(epsilon=2,
                               fit_intercept=False,
                               bounds_X=(-1, 1),
                               bounds_y=(-1, 1),
                               copy_X=True)
        clf.fit(X, y)

        self.assertIsNotNone(clf)
        self.assertIsNotNone(
            clf._preprocess_data(X,
                                 y,
                                 fit_intercept=True,
                                 bounds_X=(-1, 1),
                                 bounds_y=(-1, 1),
                                 check_input=False,
                                 copy=True))
    def test_simple(self):
        X = np.linspace(-1, 1, 1000)
        y = X.copy()
        X = X[:, np.newaxis]

        clf = LinearRegression(epsilon=2,
                               fit_intercept=False,
                               bounds_X=(-1, 1),
                               bounds_y=(-1, 1))
        clf.fit(X, y)
        print(clf.predict(np.array([0.5]).reshape(-1, 1)))

        self.assertIsNotNone(clf)
        self.assertAlmostEqual(clf.predict(np.array([0.5]).reshape(-1, 1))[0],
                               0.5,
                               delta=.05)
Ejemplo n.º 11
0
    def test_same_results(self):
        from sklearn import datasets
        from sklearn.model_selection import train_test_split
        from sklearn import linear_model

        dataset = datasets.load_iris()
        X_train, X_test, y_train, y_test = train_test_split(dataset.data,
                                                            dataset.target,
                                                            test_size=0.2)

        clf = LinearRegression(data_norm=12,
                               epsilon=float("inf"),
                               range_X=[3.6, 2.2, 5.9, 2.4],
                               range_y=2)
        clf.fit(X_train, y_train)

        predict1 = clf.predict(X_test)

        clf = linear_model.LinearRegression(normalize=False)
        clf.fit(X_train, y_train)

        predict2 = clf.predict(X_test)

        self.assertTrue(np.allclose(predict1, predict2))
    def test_different_results(self):
        from sklearn import datasets
        from sklearn import linear_model
        from sklearn.model_selection import train_test_split

        dataset = datasets.load_iris()
        X_train, X_test, y_train, y_test = train_test_split(dataset.data,
                                                            dataset.target,
                                                            test_size=0.2)

        clf = LinearRegression(bounds_X=([4.3, 2.0, 1.1,
                                          0.1], [7.9, 4.4, 6.9, 2.5]),
                               bounds_y=(0, 2))
        clf.fit(X_train, y_train)

        predict1 = clf.predict(X_test)

        clf = LinearRegression(bounds_X=([4.3, 2.0, 1.1,
                                          0.1], [7.9, 4.4, 6.9, 2.5]),
                               bounds_y=(0, 2))
        clf.fit(X_train, y_train)

        predict2 = clf.predict(X_test)

        clf = linear_model.LinearRegression()
        clf.fit(X_train, y_train)

        predict3 = clf.predict(X_test)

        self.assertFalse(np.all(predict1 == predict2))
        self.assertFalse(
            np.all(predict3 == predict1) and np.all(predict3 == predict2))
Ejemplo n.º 13
0
    def test_different_results(self):
        from sklearn import datasets
        from sklearn import linear_model
        from sklearn.model_selection import train_test_split

        dataset = datasets.load_iris()
        X_train, X_test, y_train, y_test = train_test_split(dataset.data,
                                                            dataset.target,
                                                            test_size=0.2)

        clf = LinearRegression(data_norm=12,
                               range_X=[3.6, 2.2, 5.9, 2.4],
                               range_y=2)
        clf.fit(X_train, y_train)

        predict1 = clf.predict(X_test)

        clf = LinearRegression(data_norm=12,
                               range_X=[3.6, 2.2, 5.9, 2.4],
                               range_y=2)
        clf.fit(X_train, y_train)

        predict2 = clf.predict(X_test)

        clf = linear_model.LinearRegression()
        clf.fit(X_train, y_train)

        predict3 = clf.predict(X_test)

        self.assertFalse(np.all(predict1 == predict2))
        self.assertFalse(
            np.all(predict3 == predict1) and np.all(predict3 == predict2))