def test_accountant(self):
        acc = BudgetAccountant(1.5, 0)

        a = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]).T
        histogramdd(a,
                    epsilon=1,
                    bins=3,
                    range=[(0, 10), (0, 10)],
                    density=True,
                    accountant=acc)

        with self.assertRaises(BudgetError):
            histogramdd(a,
                        epsilon=1,
                        bins=3,
                        range=[(0, 10), (0, 10)],
                        density=True,
                        accountant=acc)
    def test_different_result(self):
        global_seed(3141592653)
        a = np.array([1, 2, 3, 4, 5])
        hist, _ = np.histogramdd(a, bins=3, range=[(0, 10)])
        dp_hist, _ = histogramdd(a, epsilon=0.1, bins=3, range=[(0, 10)])

        # print("Non-private histogram: %s" % hist)
        # print("Private histogram: %s" % dp_hist)
        self.assertTrue((hist != dp_hist).any())
    def test_density_2d(self):
        global_seed(3141592653)
        a = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]).T
        dp_hist, _ = histogramdd(a,
                                 epsilon=10,
                                 bins=3,
                                 range=[(0, 10), (0, 10)],
                                 density=True)

        # print(dp_hist.sum())

        self.assertAlmostEqual(dp_hist.sum(), 1.0 * (3 / 10)**2)
    def test_density_1d(self):
        global_seed(3141592653)
        a = np.array([1, 2, 3, 4, 5])
        dp_hist, _ = histogramdd(a,
                                 epsilon=1,
                                 bins=3,
                                 range=[(0, 10)],
                                 density=True)

        # print(dp_hist.sum())

        self.assertAlmostEqual(dp_hist.sum(), 1.0 * 3 / 10)
 def test_no_params(self):
     a = np.array([1, 2, 3, 4, 5])
     with self.assertWarns(PrivacyLeakWarning):
         res = histogramdd(a)
     self.assertIsNotNone(res)
 def test_no_range(self):
     a = np.array([1, 2, 3, 4, 5])
     with self.assertWarns(PrivacyLeakWarning):
         res = histogramdd(a, epsilon=2)
     self.assertIsNotNone(res)
 def test_bins_instead_of_range(self):
     a = np.array([1, 2, 3, 4, 5])
     res = histogramdd([a, a], epsilon=2, bins=([0, 2, 6], [0, 2, 6]))
     self.assertIsNotNone(res)