Ejemplo n.º 1
0
def conv__transf_2x4x128x256_drop01__gru_2x256_drop02(num_outputs) -> nn.Module:
    model = SequentialSequential(*[
        ConvExtractor(),
        SequentialLinear(512, 128, pre_activation=True),
        TransformerEncoder(dropout=0.1, num_layers=2, num_heads=4, dim_model=128, dim_feedforward=256),
        RNNEncoder(dropout=0.2, rnn_type="GRU", num_layers=2, hidden_size=256, input_size=128),
        SequentialLinear(256 * 2, num_outputs, pre_activation=True)
    ])
    return model
Ejemplo n.º 2
0
def conv__gru_3x368_drop02(num_outputs) -> nn.Module:
    model = SequentialSequential(*[
        ConvExtractor(),
        LambdaModule(lambda seq, seq_len: (F.relu(seq), seq_len)),
        RNNEncoder(dropout=0.2, rnn_type="GRU", num_layers=3, hidden_size=368, input_size=512),
        SequentialLinear(368 * 2, num_outputs, pre_activation=True)
    ])
    return model
Ejemplo n.º 3
0
def conv_instnorm__gru_2x256_drop02(num_outputs) -> nn.Module:
    model = SequentialSequential(*[
        ConvExtractor(norm=nn.InstanceNorm2d),
        LambdaModule(lambda seq, seq_len: (F.relu(seq), seq_len)),
        RNNEncoder(dropout=0.2, rnn_type="GRU", num_layers=2, hidden_size=256, input_size=512),
        SequentialLinear(256 * 2, num_outputs, pre_activation=True)
    ])
    return model
Ejemplo n.º 4
0
def resnet_pure(num_outputs) -> nn.Module:
    model = SequentialSequential(*[
        ResnetExtractor(),
        SequentialLinear(512, num_outputs, pre_activation=True)
    ])
    return model
Ejemplo n.º 5
0
def conv_instnorm_pure(num_outputs) -> nn.Module:
    model = SequentialSequential(*[
        ConvExtractor(norm=nn.InstanceNorm2d),
        SequentialLinear(512, num_outputs, pre_activation=True)
    ])
    return model