def test_sincos_rewrite_sqrt(): for p in [1, 3, 5, 17]: for t in [1, 8]: n = t*p for i in range(1, (n + 1)//2 + 1): if 1 == gcd(i, n): x = i*pi/n s1 = sin(x).rewrite(sqrt) c1 = cos(x).rewrite(sqrt) assert not s1.has(cos, sin), f'fails for {i:d}*pi/{n:d}' assert not c1.has(cos, sin), f'fails for {i:d}*pi/{n:d}' assert 1e-3 > abs(sin(x.evalf(5)) - s1.evalf(2)), f'fails for {i:d}*pi/{n:d}' assert 1e-3 > abs(cos(x.evalf(5)) - c1.evalf(2)), f'fails for {i:d}*pi/{n:d}'
def test_tancot_rewrite_sqrt(): for p in [1, 3, 5, 17]: for t in [1, 8]: n = t*p for i in range(1, (n + 1)//2 + 1): if 1 == gcd(i, n): x = i*pi/n if 2*i != n and 3*i != 2*n: t1 = tan(x).rewrite(sqrt) assert not t1.has(cot, tan), f'fails for {i:d}*pi/{n:d}' assert 1e-3 > abs( tan(x.evalf(7)) - t1.evalf(4) ), f'fails for {i:d}*pi/{n:d}' if i != 0 and i != n: c1 = cot(x).rewrite(sqrt) assert not c1.has(cot, tan), f'fails for {i:d}*pi/{n:d}' assert 1e-3 > abs( cot(x.evalf(7)) - c1.evalf(4) ), f'fails for {i:d}*pi/{n:d}'
def t(m, n): x = Integer(m) / n r = polygamma(0, x) if r.has(polygamma): return False return abs(polygamma(0, x.evalf()).evalf(strict=False) - r.evalf()).evalf(strict=False) < 1e-10
def test_evalf_bugs(): assert NS(sin(1) + exp(-10**10), 10) == NS(sin(1), 10) assert NS(exp(10**10) + sin(1), 10) == NS(exp(10**10), 10) assert NS('log(1+1/10**50)', 20) == '1.0000000000000000000e-50' assert NS('log(10**100,10)', 10) == '100.0000000' assert NS('log(2)', 10) == '0.6931471806' assert NS( '(sin(x)-x)/x**3', 15, subs={x: '1/10**50'}) == '-0.166666666666667' assert NS(sin(1) + Rational( 1, 10**100)*I, 15) == '0.841470984807897 + 1.00000000000000e-100*I' assert x.evalf() == x assert NS((1 + I)**2*I, 6) == '-2.00000' d = {n: ( -1)**Rational(6, 7), y: (-1)**Rational(4, 7), x: (-1)**Rational(2, 7)} assert NS((x*(1 + y*(1 + n))).subs(d).evalf(), 6) == '0.346011 + 0.433884*I' assert NS(((-I - sqrt(2)*I)**2).evalf()) == '-5.82842712474619' assert NS((1 + I)**2*I, 15) == '-2.00000000000000' # issue sympy/sympy#4758 (1/2): assert NS(Float(pi.evalf(69), 100) - pi) == '-4.43863937855894e-71' assert NS(pi.evalf(69) - pi) == '-0.e-71' # issue sympy/sympy#4758 (2/2): With the bug present, this still only fails if the # terms are in the order given here. This is not generally the case, # because the order depends on the hashes of the terms. assert NS(20 - 5008329267844*n**25 - 477638700*n**37 - 19*n, subs={n: .01}) == '19.8100000000000' assert NS(((x - 1)*((1 - x))**1000).n() ) == '(-x + 1.00000000000000)**1000*(x - 1.00000000000000)' assert NS((-x).n()) == '-x' assert NS((-2*x).n()) == '-2.00000000000000*x' assert NS((-2*x*y).n()) == '-2.00000000000000*x*y' assert cos(x).n(subs={x: 1+I}) == cos(x).subs(x, 1+I).n() # issue sympy/sympy#6660. Also NaN != mpmath.nan # In this order: # 0*nan, 0/nan, 0*inf, 0/inf # 0+nan, 0-nan, 0+inf, 0-inf # >>> n = Some Number # n*nan, n/nan, n*inf, n/inf # n+nan, n-nan, n+inf, n-inf assert (0*sin(oo)).n() == S.Zero assert (0/sin(oo)).n() == S.Zero assert (0*E**(oo)).n() == S.NaN assert (0/E**(oo)).n() == S.Zero assert (0+sin(oo)).n() == S.NaN assert (0-sin(oo)).n() == S.NaN assert (0+E**(oo)).n() == S.Infinity assert (0-E**(oo)).n() == S.NegativeInfinity assert (5*sin(oo)).n() == S.NaN assert (5/sin(oo)).n() == S.NaN assert (5*E**(oo)).n() == S.Infinity assert (5/E**(oo)).n() == S.Zero assert (5+sin(oo)).n() == S.NaN assert (5-sin(oo)).n() == S.NaN assert (5+E**(oo)).n() == S.Infinity assert (5-E**(oo)).n() == S.NegativeInfinity # issue sympy/sympy#7416 assert as_mpmath(0.0, 10, {'chop': True}) == 0
def test_subs(): assert NS('besseli(-x, y) - besseli(x, y)', subs={x: 3.5, y: 20.0}) == \ '-4.92535585957223e-10' assert NS('Piecewise((x, x>0)) + Piecewise((1-x, x>0))', subs={x: 0.1}) == \ '1.00000000000000' pytest.raises(TypeError, lambda: x.evalf(subs=(x, 1)))
def test_evalf_bugs(): assert NS(sin(1) + exp(-10**10), 10) == NS(sin(1), 10) assert NS(exp(10**10) + sin(1), 10) == NS(exp(10**10), 10) assert NS('log(1+1/10**50)', 20) == '1.0000000000000000000e-50' assert NS('log(10**100,10)', 10) == '100.0000000' assert NS('log(2)', 10) == '0.6931471806' assert NS( '(sin(x)-x)/x**3', 15, subs={x: '1/10**50'}) == '-0.166666666666667' assert NS(sin(1) + I/10**100, 15) == '0.841470984807897 + 1.00000000000000e-100*I' assert x.evalf(strict=False) == x assert NS((1 + I)**2*I, 6) == '-2.00000' d = {n: ( -1)**Rational(6, 7), y: (-1)**Rational(4, 7), x: (-1)**Rational(2, 7)} assert NS((x*(1 + y*(1 + n))).subs(d).evalf(), 6) == '0.346011 + 0.433884*I' assert NS(((-I - sqrt(2)*I)**2).evalf(), strict=False) == '-5.82842712474619' assert NS((1 + I)**2*I, 15) == '-2.00000000000000' # issue sympy/sympy#4758 (1/2): assert NS(Float(pi.evalf(69), 100) - pi) == '-4.43863937855894e-71' assert NS(pi.evalf(69) - pi, strict=False) == '-0.e-71' # issue sympy/sympy#4758 (2/2): With the bug present, this still only fails if the # terms are in the order given here. This is not generally the case, # because the order depends on the hashes of the terms. assert NS(20 - 5008329267844*n**25 - 477638700*n**37 - 19*n, subs={n: .01}, strict=False) == '19.8100000000000' assert NS(((x - 1)*((1 - x))**1000).evalf(strict=False), strict=False) == '(-x + 1.00000000000000)**1000*(x - 1.00000000000000)' assert NS((-x).evalf(strict=False)) == '-x' assert NS((-2*x).evalf(strict=False), strict=False) == '-2.00000000000000*x' assert NS((-2*x*y).evalf(strict=False), strict=False) == '-2.00000000000000*x*y' assert cos(x).evalf(subs={x: 1+I}) == cos(x).subs({x: 1 + I}).evalf() # issue sympy/sympy#6660. Also NaN != mpmath.nan # In this order: # 0*nan, 0/nan, 0*inf, 0/inf # 0+nan, 0-nan, 0+inf, 0-inf # >>> n = Some Number # n*nan, n/nan, n*inf, n/inf # n+nan, n-nan, n+inf, n-inf assert (0*sin(oo)).evalf() == 0 assert (0/sin(oo)).evalf() == 0 assert (0*E**oo).evalf() == nan assert (0/E**oo).evalf() == 0 assert (0+sin(oo)).evalf() == nan assert (0-sin(oo)).evalf() == nan assert (0+E**oo).evalf() == +oo assert (0-E**oo).evalf() == -oo assert (5*sin(oo)).evalf() == nan assert (5/sin(oo)).evalf() == nan assert (5*E**oo).evalf() == oo assert (5/E**oo).evalf() == 0 assert (5+sin(oo)).evalf() == nan assert (5-sin(oo)).evalf() == nan assert (5+E**oo).evalf() == +oo assert (5-E**oo).evalf() == -oo # issue sympy/sympy#7416 assert as_mpmath(0.0, 10, {'chop': True}) == 0 # issue sympy/sympy#5412 assert (oo*I).evalf() == oo*I assert (oo + oo*I).evalf() == oo + oo*I