Ejemplo n.º 1
0
def test_normal_closure():
    # the normal closure of the trivial group is trivial
    S = SymmetricGroup(3)
    identity = Permutation([0, 1, 2])
    closure = S.normal_closure(identity)
    assert closure.is_trivial
    # the normal closure of the entire group is the entire group
    A = AlternatingGroup(4)
    assert A.normal_closure(A).is_subgroup(A)
    # brute-force verifications for subgroups
    for i in (3, 4, 5):
        S = SymmetricGroup(i)
        A = AlternatingGroup(i)
        D = DihedralGroup(i)
        C = CyclicGroup(i)
        for gp in (A, D, C):
            assert _verify_normal_closure(S, gp)
    # brute-force verifications for all elements of a group
    S = SymmetricGroup(5)
    elements = list(S.generate_dimino())
    for element in elements:
        assert _verify_normal_closure(S, element)
    # small groups
    small = []
    for i in (1, 2, 3):
        small.append(SymmetricGroup(i))
        small.append(AlternatingGroup(i))
        small.append(DihedralGroup(i))
        small.append(CyclicGroup(i))
    for gp in small:
        for gp2 in small:
            if gp2.is_subgroup(gp, 0) and gp2.degree == gp.degree:
                assert _verify_normal_closure(gp, gp2)
Ejemplo n.º 2
0
def test_normal_closure():
    # the normal closure of the trivial group is trivial
    S = SymmetricGroup(3)
    identity = Permutation([0, 1, 2])
    closure = S.normal_closure(identity)
    assert closure.is_trivial
    # the normal closure of the entire group is the entire group
    A = AlternatingGroup(4)
    assert A.normal_closure(A).is_subgroup(A)
    # brute-force verifications for subgroups
    for i in (3, 4, 5):
        S = SymmetricGroup(i)
        A = AlternatingGroup(i)
        D = DihedralGroup(i)
        C = CyclicGroup(i)
        for gp in (A, D, C):
            assert _verify_normal_closure(S, gp)
    # brute-force verifications for all elements of a group
    S = SymmetricGroup(5)
    elements = list(S.generate_dimino())
    for element in elements:
        assert _verify_normal_closure(S, element)
    # small groups
    small = []
    for i in (1, 2, 3):
        small.append(SymmetricGroup(i))
        small.append(AlternatingGroup(i))
        small.append(DihedralGroup(i))
        small.append(CyclicGroup(i))
    for gp in small:
        for gp2 in small:
            if gp2.is_subgroup(gp, 0) and gp2.degree == gp.degree:
                assert _verify_normal_closure(gp, gp2)
Ejemplo n.º 3
0
def test_centralizer():
    # the centralizer of the trivial group is the entire group
    S = SymmetricGroup(2)
    assert S.centralizer(Permutation(list(range(2)))).is_subgroup(S)
    A = AlternatingGroup(5)
    assert A.centralizer(Permutation(list(range(5)))).is_subgroup(A)
    # a centralizer in the trivial group is the trivial group itself
    triv = PermutationGroup([Permutation([0, 1, 2, 3])])
    D = DihedralGroup(4)
    assert triv.centralizer(D).is_subgroup(triv)
    # brute-force verifications for centralizers of groups
    for i in (4, 5, 6):
        S = SymmetricGroup(i)
        A = AlternatingGroup(i)
        C = CyclicGroup(i)
        D = DihedralGroup(i)
        for gp in (S, A, C, D):
            for gp2 in (S, A, C, D):
                if not gp2.is_subgroup(gp):
                    assert _verify_centralizer(gp, gp2)
    # verify the centralizer for all elements of several groups
    S = SymmetricGroup(5)
    elements = list(S.generate_dimino())
    for element in elements:
        assert _verify_centralizer(S, element)
    A = AlternatingGroup(5)
    elements = list(A.generate_dimino())
    for element in elements:
        assert _verify_centralizer(A, element)
    D = DihedralGroup(7)
    elements = list(D.generate_dimino())
    for element in elements:
        assert _verify_centralizer(D, element)
    # verify centralizers of small groups within small groups
    small = []
    for i in (1, 2, 3):
        small.append(SymmetricGroup(i))
        small.append(AlternatingGroup(i))
        small.append(DihedralGroup(i))
        small.append(CyclicGroup(i))
    for gp in small:
        for gp2 in small:
            if gp.degree == gp2.degree:
                assert _verify_centralizer(gp, gp2)
Ejemplo n.º 4
0
def test_centralizer():
    # the centralizer of the trivial group is the entire group
    S = SymmetricGroup(2)
    assert S.centralizer(Permutation(list(range(2)))).is_subgroup(S)
    A = AlternatingGroup(5)
    assert A.centralizer(Permutation(list(range(5)))).is_subgroup(A)
    # a centralizer in the trivial group is the trivial group itself
    triv = PermutationGroup([Permutation([0, 1, 2, 3])])
    D = DihedralGroup(4)
    assert triv.centralizer(D).is_subgroup(triv)
    # brute-force verifications for centralizers of groups
    for i in (4, 5, 6):
        S = SymmetricGroup(i)
        A = AlternatingGroup(i)
        C = CyclicGroup(i)
        D = DihedralGroup(i)
        for gp in (S, A, C, D):
            for gp2 in (S, A, C, D):
                if not gp2.is_subgroup(gp):
                    assert _verify_centralizer(gp, gp2)
    # verify the centralizer for all elements of several groups
    S = SymmetricGroup(5)
    elements = list(S.generate_dimino())
    for element in elements:
        assert _verify_centralizer(S, element)
    A = AlternatingGroup(5)
    elements = list(A.generate_dimino())
    for element in elements:
        assert _verify_centralizer(A, element)
    D = DihedralGroup(7)
    elements = list(D.generate_dimino())
    for element in elements:
        assert _verify_centralizer(D, element)
    # verify centralizers of small groups within small groups
    small = []
    for i in (1, 2, 3):
        small.append(SymmetricGroup(i))
        small.append(AlternatingGroup(i))
        small.append(DihedralGroup(i))
        small.append(CyclicGroup(i))
    for gp in small:
        for gp2 in small:
            if gp.degree == gp2.degree:
                assert _verify_centralizer(gp, gp2)
Ejemplo n.º 5
0
def test_cmp_perm_lists():
    S = SymmetricGroup(4)
    els = list(S.generate_dimino())
    other = els[:]
    shuffle(other)
    assert _cmp_perm_lists(els, other) is True
Ejemplo n.º 6
0
def test_cmp_perm_lists():
    S = SymmetricGroup(4)
    els = list(S.generate_dimino())
    other = els[:]
    shuffle(other)
    assert _cmp_perm_lists(els, other) is True