Ejemplo n.º 1
0
def no_cancel_b_large(b, c, n, DE):
    """
    Poly Risch Differential Equation - No cancellation: deg(b) large enough.

    Given a derivation D on k[t], n either an integer or +oo, and b, c
    in k[t] with b != 0 and either D == d/dt or
    deg(b) > max(0, deg(D) - 1), either raise NonElementaryIntegralException, in
    which case the equation Dq + b*q == c has no solution of degree at
    most n in k[t], or a solution q in k[t] of this equation with
    deg(q) < n.
    """
    q = Poly(0, DE.t)

    while not c.is_zero:
        m = c.degree(DE.t) - b.degree(DE.t)
        if not 0 <= m <= n:  # n < 0 or m < 0 or m > n
            raise NonElementaryIntegralException

        p = Poly(c.as_poly(DE.t).LC() / b.as_poly(DE.t).LC() * DE.t**m,
                 DE.t,
                 expand=False)
        q = q + p
        n = m - 1
        c = c - derivation(p, DE) - b * p

    return q
Ejemplo n.º 2
0
def prde_no_cancel_b_large(b, Q, n, DE):
    """
    Parametric Poly Risch Differential Equation - No cancellation: deg(b) large enough.

    Given a derivation D on k[t], n in ZZ, and b, q1, ..., qm in k[t] with
    b != 0 and either D == d/dt or deg(b) > max(0, deg(D) - 1), returns
    h1, ..., hr in k[r] and a matrix A with coefficients in Const(k) such that
    if c1, ..., cm in Const(k) and q in k[t] satisfy deg(q) <= n and
    Dq + b*Q == Sum(ci*qi, (i, 1, m)), then q = Sum(dj*hj, (j, 1, r)), where
    d1, ..., dr in Const(k) and A*Matrix([[c1, ..., cm, d1, ..., dr]]).T == 0.
    """
    db = b.degree(DE.t)
    m = len(Q)
    H = [Poly(0, DE.t)]*m

    for N in range(n, -1, -1):  # [n, ..., 0]
        for i in range(m):
            si = Q[i].nth(N + db)/b.LC()
            sitn = Poly(si*DE.t**N, DE.t)
            H[i] = H[i] + sitn
            Q[i] = Q[i] - derivation(sitn, DE) - b*sitn

    if all(qi.is_zero for qi in Q):
        dc = -1
        M = zeros(0, 2)
    else:
        dc = max([qi.degree(t) for qi in Q])
        M = Matrix(dc + 1, m, lambda i, j: Q[j].nth(i))
    A, u = constant_system(M, zeros(dc + 1, 1), DE)
    c = eye(m)
    A = A.row_join(zeros(A.rows, m)).col_join(c.row_join(-c))

    return H, A
Ejemplo n.º 3
0
def prde_normal_denom(fa, fd, G, DE):
    """
    Parametric Risch Differential Equation - Normal part of the denominator.

    Given a derivation D on k[t] and f, g1, ..., gm in k(t) with f weakly
    normalized with respect to t, return the tuple (a, b, G, h) such that
    a, h in k[t], b in k<t>, G = [g1, ..., gm] in k(t)^m, and for any solution
    c1, ..., cm in Const(k) and y in k(t) of Dy + f*y == Sum(ci*gi, (i, 1, m)),
    q == y*h in k<t> satisfies a*Dq + b*q == Sum(ci*Gi, (i, 1, m)).
    """
    dn, ds = splitfactor(fd, DE)
    Gas, Gds = list(zip(*G))
    gd = reduce(lambda i, j: i.lcm(j), Gds, Poly(1, DE.t))
    en, es = splitfactor(gd, DE)

    p = dn.gcd(en)
    h = en.gcd(en.diff(DE.t)).quo(p.gcd(p.diff(DE.t)))

    a = dn*h
    c = a*h

    ba = a*fa - dn*derivation(h, DE)*fd
    ba, bd = ba.cancel(fd, include=True)

    G = [(c*A).cancel(D, include=True) for A, D in G]

    return a, (ba, bd), G, h
Ejemplo n.º 4
0
def normal_denom(fa, fd, ga, gd, DE):
    """
    Normal part of the denominator.

    Given a derivation D on k[t] and f, g in k(t) with f weakly
    normalized with respect to t, either raise NonElementaryIntegralException,
    in which case the equation Dy + f*y == g has no solution in k(t), or the
    quadruplet (a, b, c, h) such that a, h in k[t], b, c in k<t>, and for any
    solution y in k(t) of Dy + f*y == g, q = y*h in k<t> satisfies
    a*Dq + b*q == c.

    This constitutes step 1 in the outline given in the rde.py docstring.
    """
    dn, ds = splitfactor(fd, DE)
    en, es = splitfactor(gd, DE)

    p = dn.gcd(en)
    h = en.gcd(en.diff(DE.t)).quo(p.gcd(p.diff(DE.t)))

    a = dn * h
    c = a * h
    if c.div(en)[1]:
        # en does not divide dn*h**2
        raise NonElementaryIntegralException
    ca = c * ga
    ca, cd = ca.cancel(gd, include=True)

    ba = a * fa - dn * derivation(h, DE) * fd
    ba, bd = ba.cancel(fd, include=True)

    # (dn*h, dn*h*f - dn*Dh, dn*h**2*g, h)
    return a, (ba, bd), (ca, cd), h
Ejemplo n.º 5
0
def weak_normalizer(a, d, DE, z=None):
    """
    Weak normalization.

    Given a derivation D on k[t] and f == a/d in k(t), return q in k[t]
    such that f - Dq/q is weakly normalized with respect to t.

    f in k(t) is said to be "weakly normalized" with respect to t if
    residue_p(f) is not a positive integer for any normal irreducible p
    in k[t] such that f is in R_p (Definition 6.1.1).  If f has an
    elementary integral, this is equivalent to no logarithm of
    integral(f) whose argument depends on t has a positive integer
    coefficient, where the arguments of the logarithms not in k(t) are
    in k[t].

    Returns (q, f - Dq/q)
    """
    z = z or Dummy('z')
    dn, ds = splitfactor(d, DE)

    # Compute d1, where dn == d1*d2**2*...*dn**n is a square-free
    # factorization of d.
    g = gcd(dn, dn.diff(DE.t))
    d_sqf_part = dn.quo(g)
    d1 = d_sqf_part.quo(gcd(d_sqf_part, g))

    a1, b = gcdex_diophantine(
        d.quo(d1).as_poly(DE.t), d1.as_poly(DE.t), a.as_poly(DE.t))
    r = (a - Poly(z, DE.t) * derivation(d1, DE)).as_poly(DE.t).resultant(
        d1.as_poly(DE.t))
    r = Poly(r, z)

    if not r.has(z):
        return Poly(1, DE.t), (a, d)

    N = [i for i in r.real_roots() if i in ZZ and i > 0]

    q = reduce(mul,
               [gcd(a - Poly(n, DE.t) * derivation(d1, DE), d1) for n in N],
               Poly(1, DE.t))

    dq = derivation(q, DE)
    sn = q * a - d * dq
    sd = q * d
    sn, sd = sn.cancel(sd, include=True)

    return q, (sn, sd)
Ejemplo n.º 6
0
def limited_integrate_reduce(fa, fd, G, DE):
    """
    Simpler version of step 1 & 2 for the limited integration problem.

    Given a derivation D on k(t) and f, g1, ..., gn in k(t), return
    (a, b, h, N, g, V) such that a, b, h in k[t], N is a non-negative integer,
    g in k(t), V == [v1, ..., vm] in k(t)^m, and for any solution v in k(t),
    c1, ..., cm in C of f == Dv + Sum(ci*wi, (i, 1, m)), p = v*h is in k<t>, and
    p and the ci satisfy a*Dp + b*p == g + Sum(ci*vi, (i, 1, m)).  Furthermore,
    if S1irr == Sirr, then p is in k[t], and if t is nonlinear or Liouvillian
    over k, then deg(p) <= N.

    So that the special part is always computed, this function calls the more
    general prde_special_denom() automatically if it cannot determine that
    S1irr == Sirr.  Furthermore, it will automatically call bound_degree() when
    t is linear and non-Liouvillian, which for the transcendental case, implies
    that Dt == a*t + b with for some a, b in k*.
    """
    dn, ds = splitfactor(fd, DE)
    E = [splitfactor(gd, DE) for _, gd in G]
    En, Es = list(zip(*E))
    c = reduce(lambda i, j: i.lcm(j), (dn,) + En)  # lcm(dn, en1, ..., enm)
    hn = c.gcd(c.diff(DE.t))
    a = hn
    b = -derivation(hn, DE)
    N = 0

    # These are the cases where we know that S1irr = Sirr, but there could be
    # others, and this algorithm will need to be extended to handle them.
    if DE.case in ['base', 'primitive', 'exp', 'tan']:
        hs = reduce(lambda i, j: i.lcm(j), (ds,) + Es)  # lcm(ds, es1, ..., esm)
        a = hn*hs
        b = -derivation(hn, DE) - (hn*derivation(hs, DE)).quo(hs)
        mu = min(order_at_oo(fa, fd, DE.t), min([order_at_oo(ga, gd, DE.t) for
            ga, gd in G]))
        # So far, all the above are also nonlinear or Liouvillian, but if this
        # changes, then this will need to be updated to call bound_degree()
        # as per the docstring of this function (DE.case == 'other_linear').
        N = hn.degree(DE.t) + hs.degree(DE.t) + max(0, 1 - DE.d.degree(DE.t) - mu)
    else:
        # TODO: implement this
        raise NotImplementedError

    V = [(-a*hn*ga).cancel(gd, include=True) for ga, gd in G]
    return a, b, a, N, (a*hn*fa).cancel(fd, include=True), V
Ejemplo n.º 7
0
def cancel_exp(b, c, n, DE):
    """
    Poly Risch Differential Equation - Cancellation: Hyperexponential case.

    Given a derivation D on k[t], n either an integer or +oo, b in k, and
    c in k[t] with Dt/t in k and b != 0, either raise
    NonElementaryIntegralException, in which case the equation Dq + b*q == c
    has no solution of degree at most n in k[t], or a solution q in k[t] of
    this equation with deg(q) <= n.
    """
    from diofant.integrals.prde import parametric_log_deriv

    eta = DE.d.quo(Poly(DE.t, DE.t)).as_expr()

    with DecrementLevel(DE):
        etaa, etad = frac_in(eta, DE.t)
        ba, bd = frac_in(b, DE.t)
        A = parametric_log_deriv(ba, bd, etaa, etad, DE)
        if A is not None:
            a, m, z = A
            if a == 1:
                raise NotImplementedError("is_deriv_in_field() is required to "
                                          "solve this problem.")
                # if c*z*t**m == Dp for p in k<t> and q = p/(z*t**m) in k[t] and
                # deg(q) <= n:
                #     return q
                # else:
                #     raise NonElementaryIntegralException

    if c.is_zero:
        return c  # return 0

    if n < c.degree(DE.t):
        raise NonElementaryIntegralException

    q = Poly(0, DE.t)
    while not c.is_zero:
        m = c.degree(DE.t)
        if n < m:
            raise NonElementaryIntegralException
        # a1 = b + m*Dt/t
        a1 = b.as_expr()
        with DecrementLevel(DE):
            # TODO: Write a dummy function that does this idiom
            a1a, a1d = frac_in(a1, DE.t)
            a1a = a1a * etad + etaa * a1d * Poly(m, DE.t)
            a1d = a1d * etad

            a2a, a2d = frac_in(c.LC(), DE.t)

            sa, sd = rischDE(a1a, a1d, a2a, a2d, DE)
        stm = Poly(sa.as_expr() / sd.as_expr() * DE.t**m, DE.t, expand=False)
        q += stm
        n = m - 1
        c -= b * stm + derivation(stm, DE)  # deg(c) becomes smaller
    return q
Ejemplo n.º 8
0
def spde(a, b, c, n, DE):
    """
    Rothstein's Special Polynomial Differential Equation algorithm.

    Given a derivation D on k[t], an integer n and a, b, c in k[t] with
    a != 0, either raise NonElementaryIntegralException, in which case the
    equation a*Dq + b*q == c has no solution of degree at most n in
    k[t], or return the tuple (B, C, m, alpha, beta) such that B, C,
    alpha, beta in k[t], m in ZZ, and any solution q in k[t] of degree
    at most n of a*Dq + b*q == c must be of the form
    q == alpha*h + beta, where h in k[t], deg(h) <= m, and Dh + B*h == C.

    This constitutes step 4 of the outline given in the rde.py docstring.
    """
    zero = Poly(0, DE.t)

    alpha = Poly(1, DE.t)
    beta = Poly(0, DE.t)

    while True:
        if c.is_zero:
            return zero, zero, 0, zero, beta  # -1 is more to the point
        if (n < 0) is True:
            raise NonElementaryIntegralException

        g = a.gcd(b)
        if not c.rem(g).is_zero:  # g does not divide c
            raise NonElementaryIntegralException

        a, b, c = a.quo(g), b.quo(g), c.quo(g)

        if a.degree(DE.t) == 0:
            b = b.to_field().quo(a)
            c = c.to_field().quo(a)
            return b, c, n, alpha, beta

        r, z = gcdex_diophantine(b, a, c)
        b += derivation(a, DE)
        c = z - derivation(r, DE)
        n -= a.degree(DE.t)

        beta += alpha * r
        alpha *= a
Ejemplo n.º 9
0
def prde_spde(a, b, Q, n, DE):
    """
    Special Polynomial Differential Equation algorithm: Parametric Version.

    Given a derivation D on k[t], an integer n, and a, b, q1, ..., qm in k[t]
    with deg(a) > 0 and gcd(a, b) == 1, return (A, B, Q, R, n1), with
    Qq = [q1, ..., qm] and R = [r1, ..., rm], such that for any solution
    c1, ..., cm in Const(k) and q in k[t] of degree at most n of
    a*Dq + b*q == Sum(ci*gi, (i, 1, m)), p = (q - Sum(ci*ri, (i, 1, m)))/a has
    degree at most n1 and satisfies A*Dp + B*p == Sum(ci*qi, (i, 1, m))
    """
    R, Z = list(zip(*[gcdex_diophantine(b, a, qi) for qi in Q]))

    A = a
    B = b + derivation(a, DE)
    Qq = [zi - derivation(ri, DE) for ri, zi in zip(R, Z)]
    R = list(R)
    n1 = n - a.degree(DE.t)

    return A, B, Qq, R, n1
Ejemplo n.º 10
0
def prde_no_cancel_b_small(b, Q, n, DE):
    """
    Parametric Poly Risch Differential Equation - No cancellation: deg(b) small enough.

    Given a derivation D on k[t], n in ZZ, and b, q1, ..., qm in k[t] with
    deg(b) < deg(D) - 1 and either D == d/dt or deg(D) >= 2, returns
    h1, ..., hr in k[t] and a matrix A with coefficients in Const(k) such that
    if c1, ..., cm in Const(k) and q in k[t] satisfy deg(q) <= n and
    Dq + b*q == Sum(ci*qi, (i, 1, m)) then q = Sum(dj*hj, (j, 1, r)) where
    d1, ..., dr in Const(k) and A*Matrix([[c1, ..., cm, d1, ..., dr]]).T == 0.
    """
    m = len(Q)
    H = [Poly(0, DE.t)]*m

    for N in range(n, 0, -1):  # [n, ..., 1]
        for i in range(m):
            si = Q[i].nth(N + DE.d.degree(DE.t) - 1)/(N*DE.d.LC())
            sitn = Poly(si*DE.t**N, DE.t)
            H[i] = H[i] + sitn
            Q[i] = Q[i] - derivation(sitn, DE) - b*sitn

    if b.degree(DE.t) > 0:
        for i in range(m):
            si = Poly(Q[i].nth(b.degree(DE.t))/b.LC(), DE.t)
            H[i] = H[i] + si
            Q[i] = Q[i] - derivation(si, DE) - b*si
        if all(qi.is_zero for qi in Q):
            dc = -1
            M = Matrix()
        else:
            dc = max([qi.degree(DE.t) for qi in Q])
            M = Matrix(dc + 1, m, lambda i, j: Q[j].nth(i))
        A, u = constant_system(M, zeros(dc + 1, 1), DE)
        c = eye(m)
        A = A.row_join(zeros(A.rows, m)).col_join(c.row_join(-c))
        return H, A
    else:
        # TODO: implement this (requires recursive param_rischDE() call)
        raise NotImplementedError
Ejemplo n.º 11
0
def test_derivation():
    p = Poly(4*x**4*t**5 + (-4*x**3 - 4*x**4)*t**4 + (-3*x**2 + 2*x**3)*t**3 +
             (2*x + 7*x**2 + 2*x**3)*t**2 + (1 - 4*x - 4*x**2)*t - 1 + 2*x, t)
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t**2 - 3/(2*x)*t + 1/(2*x), t)]})
    assert derivation(p, DE) == Poly(-20*x**4*t**6 + (2*x**3 + 16*x**4)*t**5 +
                                     (21*x**2 + 12*x**3)*t**4 + (7*x/2 - 25*x**2 - 12*x**3)*t**3 +
                                     (-5 - 15*x/2 + 7*x**2)*t**2 - (3 - 8*x - 10*x**2 - 4*x**3)/(2*x)*t +
                                     (1 - 4*x**2)/(2*x), t)
    assert derivation(Poly(1, t), DE) == Poly(0, t)
    assert derivation(Poly(t, t), DE) == DE.d
    assert derivation(Poly(t**2 + 1/x*t + (1 - 2*x)/(4*x**2), t), DE) == \
        Poly(-2*t**3 - 4/x*t**2 - (5 - 2*x)/(2*x**2)*t - (1 - 2*x)/(2*x**3), t, domain='ZZ(x)')
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t1), Poly(t, t)]})
    assert derivation(Poly(x*t*t1, t), DE) == Poly(t*t1 + x*t*t1 + t, t)
    assert derivation(Poly(x*t*t1, t), DE, coefficientD=True) == \
        Poly((1 + t1)*t, t)
    DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
    assert derivation(Poly(x, x), DE) == Poly(1, x)
    # Test basic option
    assert derivation((x + 1)/(x - 1), DE, basic=True) == -2/(1 - 2*x + x**2)
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
    assert derivation((t + 1)/(t - 1), DE, basic=True) == -2*t/(1 - 2*t + t**2)
    assert derivation(t + 1, DE, basic=True) == t
Ejemplo n.º 12
0
def test_derivation():
    p = Poly(4*x**4*t**5 + (-4*x**3 - 4*x**4)*t**4 + (-3*x**2 + 2*x**3)*t**3 +
             (2*x + 7*x**2 + 2*x**3)*t**2 + (1 - 4*x - 4*x**2)*t - 1 + 2*x, t)
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t**2 - 3/(2*x)*t + 1/(2*x), t)]})
    assert derivation(p, DE) == Poly(-20*x**4*t**6 + (2*x**3 + 16*x**4)*t**5 +
                                     (21*x**2 + 12*x**3)*t**4 + (7*x/2 - 25*x**2 - 12*x**3)*t**3 +
                                     (-5 - 15*x/2 + 7*x**2)*t**2 - (3 - 8*x - 10*x**2 - 4*x**3)/(2*x)*t +
                                     (1 - 4*x**2)/(2*x), t)
    assert derivation(Poly(1, t), DE) == Poly(0, t)
    assert derivation(Poly(t, t), DE) == DE.d
    assert derivation(Poly(t**2 + 1/x*t + (1 - 2*x)/(4*x**2), t), DE) == \
        Poly(-2*t**3 - 4/x*t**2 - (5 - 2*x)/(2*x**2)*t - (1 - 2*x)/(2*x**3), t, domain='ZZ(x)')
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t1), Poly(t, t)]})
    assert derivation(Poly(x*t*t1, t), DE) == Poly(t*t1 + x*t*t1 + t, t)
    assert derivation(Poly(x*t*t1, t), DE, coefficientD=True) == \
        Poly((1 + t1)*t, t)
    DE = DifferentialExtension(extension={'D': [Poly(1, x)]})
    assert derivation(Poly(x, x), DE) == Poly(1, x)
    # Test basic option
    assert derivation((x + 1)/(x - 1), DE, basic=True) == -2/(1 - 2*x + x**2)
    DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]})
    assert derivation((t + 1)/(t - 1), DE, basic=True) == -2*t/(1 - 2*t + t**2)
    assert derivation(t + 1, DE, basic=True) == t
Ejemplo n.º 13
0
def cancel_primitive(b, c, n, DE):
    """
    Poly Risch Differential Equation - Cancellation: Primitive case.

    Given a derivation D on k[t], n either an integer or +oo, b in k, and
    c in k[t] with Dt in k and b != 0, either raise
    NonElementaryIntegralException, in which case the equation Dq + b*q == c
    has no solution of degree at most n in k[t], or a solution q in k[t] of
    this equation with deg(q) <= n.
    """
    from diofant.integrals.prde import is_log_deriv_k_t_radical_in_field

    with DecrementLevel(DE):
        ba, bd = frac_in(b, DE.t)
        A = is_log_deriv_k_t_radical_in_field(ba, bd, DE)
        if A is not None:
            n, z = A
            if n == 1:  # b == Dz/z
                raise NotImplementedError("is_deriv_in_field() is required to "
                                          " solve this problem.")
                # if z*c == Dp for p in k[t] and deg(p) <= n:
                #     return p/z
                # else:
                #     raise NonElementaryIntegralException

    if c.is_zero:
        return c  # return 0

    if n < c.degree(DE.t):
        raise NonElementaryIntegralException

    q = Poly(0, DE.t)
    while not c.is_zero:
        m = c.degree(DE.t)
        if n < m:
            raise NonElementaryIntegralException
        with DecrementLevel(DE):
            a2a, a2d = frac_in(c.LC(), DE.t)
            sa, sd = rischDE(ba, bd, a2a, a2d, DE)
        stm = Poly(sa.as_expr() / sd.as_expr() * DE.t**m, DE.t, expand=False)
        q += stm
        n = m - 1
        c -= b * stm + derivation(stm, DE)

    return q
Ejemplo n.º 14
0
def no_cancel_b_small(b, c, n, DE):
    """
    Poly Risch Differential Equation - No cancellation: deg(b) small enough.

    Given a derivation D on k[t], n either an integer or +oo, and b, c
    in k[t] with deg(b) < deg(D) - 1 and either D == d/dt or
    deg(D) >= 2, either raise NonElementaryIntegralException, in which case the
    equation Dq + b*q == c has no solution of degree at most n in k[t],
    or a solution q in k[t] of this equation with deg(q) <= n, or the
    tuple (h, b0, c0) such that h in k[t], b0, c0, in k, and for any
    solution q in k[t] of degree at most n of Dq + bq == c, y == q - h
    is a solution in k of Dy + b0*y == c0.
    """
    q = Poly(0, DE.t)

    while not c.is_zero:
        if n == 0:
            m = 0
        else:
            m = c.degree(DE.t) - DE.d.degree(DE.t) + 1

        if not 0 <= m <= n:  # n < 0 or m < 0 or m > n
            raise NonElementaryIntegralException

        if m > 0:
            p = Poly(c.as_poly(DE.t).LC() / (m * DE.d.as_poly(DE.t).LC()) *
                     DE.t**m,
                     DE.t,
                     expand=False)
        else:
            if b.degree(DE.t) != c.degree(DE.t):
                raise NonElementaryIntegralException
            if b.degree(DE.t) == 0:
                return (q, b.as_poly(DE.T[DE.level - 1]),
                        c.as_poly(DE.T[DE.level - 1]))
            p = Poly(c.as_poly(DE.t).LC() / b.as_poly(DE.t).LC(),
                     DE.t,
                     expand=False)

        q = q + p
        n = m - 1
        c = c - derivation(p, DE) - b * p

    return q
Ejemplo n.º 15
0
def no_cancel_equal(b, c, n, DE):
    """
    Poly Risch Differential Equation - No cancellation: deg(b) == deg(D) - 1

    Given a derivation D on k[t] with deg(D) >= 2, n either an integer
    or +oo, and b, c in k[t] with deg(b) == deg(D) - 1, either raise
    NonElementaryIntegralException, in which case the equation Dq + b*q == c has
    no solution of degree at most n in k[t], or a solution q in k[t] of
    this equation with deg(q) <= n, or the tuple (h, m, C) such that h
    in k[t], m in ZZ, and C in k[t], and for any solution q in k[t] of
    degree at most n of Dq + b*q == c, y == q - h is a solution in k[t]
    of degree at most m of Dy + b*y == C.
    """
    q = Poly(0, DE.t)
    lc = cancel(-b.as_poly(DE.t).LC() / DE.d.as_poly(DE.t).LC())
    if lc.is_Integer and lc.is_positive:
        M = lc
    else:
        M = -1

    while not c.is_zero:
        m = max(M, c.degree(DE.t) - DE.d.degree(DE.t) + 1)

        if not 0 <= m <= n:  # n < 0 or m < 0 or m > n
            raise NonElementaryIntegralException

        u = cancel(m * DE.d.as_poly(DE.t).LC() + b.as_poly(DE.t).LC())
        if u.is_zero:
            return q, m, c
        if m > 0:
            p = Poly(c.as_poly(DE.t).LC() / u * DE.t**m, DE.t, expand=False)
        else:
            if c.degree(DE.t) != DE.d.degree(DE.t) - 1:
                raise NonElementaryIntegralException
            else:
                p = c.as_poly(DE.t).LC() / b.as_poly(DE.t).LC()

        q = q + p
        n = m - 1
        c = c - derivation(p, DE) - b * p

    return q
Ejemplo n.º 16
0
                betad = alphad
                etaa, etad = frac_in(dcoeff, DE.t)
                if recognize_log_derivative(2*betaa, betad, DE):
                    A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE)
                    B = parametric_log_deriv(betaa, betad, etaa, etad, DE)
                    if A is not None and B is not None:
                        a, s, z = A
                        if a == 1:
                            n = min(n, s/2)

    N = max(0, -nb)
    pN = p**N
    pn = p**-n  # This is 1/h

    A = a*pN
    B = ba*pN.quo(bd) + Poly(n, DE.t)*a*derivation(p, DE).quo(p)*pN
    G = [(Ga*pN*pn).cancel(Gd, include=True) for Ga, Gd in G]
    h = pn

    # (a*p**N, (b + n*a*Dp/p)*p**N, g1*p**(N - n), ..., gm*p**(N - n), p**-n)
    return A, B, G, h


def prde_linear_constraints(a, b, G, DE):
    """
    Parametric Risch Differential Equation - Generate linear constraints on the constants.

    Given a derivation D on k[t], a, b, in k[t] with gcd(a, b) == 1, and
    G = [g1, ..., gm] in k(t)^m, return Q = [q1, ..., qm] in k[t]^m and a
    matrix M with entries in k(t) such that for any solution c1, ..., cm in
    Const(k) and p in k[t] of a*Dp + b*p == Sum(ci*gi, (i, 1, m)),
Ejemplo n.º 17
0
def is_log_deriv_k_t_radical(fa, fd, DE, Df=True):
    """
    Checks if Df is the logarithmic derivative of a k(t)-radical.

    b in k(t) can be written as the logarithmic derivative of a k(t) radical if
    there exist n in ZZ and u in k(t) with n, u != 0 such that n*b == Du/u.
    Either returns (ans, u, n, const) or None, which means that Df cannot be
    written as the logarithmic derivative of a k(t)-radical.  ans is a list of
    tuples such that Mul(*[i**j for i, j in ans]) == u.  This is useful for
    seeing exactly what elements of k(t) produce u.

    This function uses the structure theorem approach, which says that for any
    f in K, Df is the logarithmic derivative of a K-radical if and only if there
    are ri in QQ such that::

            ---               ---       Dt
            \    r  * Dt   +  \    r  *   i
            /     i     i     /     i   ---   =  Df.
            ---               ---        t
         i in L            i in E         i
               K/C(x)            K/C(x)


    Where C = Const(K), L_K/C(x) = { i in {1, ..., n} such that t_i is
    transcendental over C(x)(t_1, ..., t_i-1) and Dt_i = Da_i/a_i, for some a_i
    in C(x)(t_1, ..., t_i-1)* } (i.e., the set of all indices of logarithmic
    monomials of K over C(x)), and E_K/C(x) = { i in {1, ..., n} such that t_i
    is transcendental over C(x)(t_1, ..., t_i-1) and Dt_i/t_i = Da_i, for some
    a_i in C(x)(t_1, ..., t_i-1) } (i.e., the set of all indices of
    hyperexponential monomials of K over C(x)).  If K is an elementary extension
    over C(x), then the cardinality of L_K/C(x) U E_K/C(x) is exactly the
    transcendence degree of K over C(x).  Furthermore, because Const_D(K) ==
    Const_D(C(x)) == C, deg(Dt_i) == 1 when t_i is in E_K/C(x) and
    deg(Dt_i) == 0 when t_i is in L_K/C(x), implying in particular that E_K/C(x)
    and L_K/C(x) are disjoint.

    The sets L_K/C(x) and E_K/C(x) must, by their nature, be computed
    recursively using this same function.  Therefore, it is required to pass
    them as indices to D (or T).  L_args are the arguments of the logarithms
    indexed by L_K (i.e., if i is in L_K, then T[i] == log(L_args[i])).  This is
    needed to compute the final answer u such that n*f == Du/u.

    exp(f) will be the same as u up to a multiplicative constant.  This is
    because they will both behave the same as monomials.  For example, both
    exp(x) and exp(x + 1) == E*exp(x) satisfy Dt == t. Therefore, the term const
    is returned.  const is such that exp(const)*f == u.  This is calculated by
    subtracting the arguments of one exponential from the other.  Therefore, it
    is necessary to pass the arguments of the exponential terms in E_args.

    To handle the case where we are given Df, not f, use
    is_log_deriv_k_t_radical_in_field().
    """
    H = []
    if Df:
        dfa, dfd = (fd*derivation(fa, DE) - fa*derivation(fd, DE)).cancel(fd**2,
            include=True)
    else:
        dfa, dfd = fa, fd

    # Our assumption here is that each monomial is recursively transcendental
    if len(DE.L_K) + len(DE.E_K) != len(DE.D) - 1:
        if [i for i in DE.cases if i == 'tan'] or \
                {i for i in DE.cases if i == 'primitive'} - set(DE.L_K):
            raise NotImplementedError("Real version of the structure "
                "theorems with hypertangent support is not yet implemented.")

        # TODO: What should really be done in this case?
        raise NotImplementedError("Nonelementary extensions not supported "
            "in the structure theorems.")

    E_part = [DE.D[i].quo(Poly(DE.T[i], DE.T[i])).as_expr() for i in DE.E_K]
    L_part = [DE.D[i].as_expr() for i in DE.L_K]

    lhs = Matrix([E_part + L_part])
    rhs = Matrix([dfa.as_expr()/dfd.as_expr()])

    A, u = constant_system(lhs, rhs, DE)
    if not all(derivation(i, DE, basic=True).is_zero for i in u) or not A:
        # If the elements of u are not all constant
        # Note: See comment in constant_system

        # Also note: derivation(basic=True) calls cancel()
        return
    else:
        if not all(i.is_Rational for i in u):
            # TODO: But maybe we can tell if they're not rational, like
            # log(2)/log(3). Also, there should be an option to continue
            # anyway, even if the result might potentially be wrong.
            raise NotImplementedError("Cannot work with non-rational "
                "coefficients in this case.")
        else:
            n = reduce(ilcm, [i.as_numer_denom()[1] for i in u])
            u *= n
            terms = [DE.T[i] for i in DE.E_K] + DE.L_args
            ans = list(zip(terms, u))
            result = Mul(*[Pow(i, j) for i, j in ans])

            # exp(f) will be the same as result up to a multiplicative
            # constant.  We now find the log of that constant.
            argterms = DE.E_args + [DE.T[i] for i in DE.L_K]
            const = cancel(fa.as_expr()/fd.as_expr() -
                Add(*[Mul(i, j/n) for i, j in zip(argterms, u)]))

            return ans, result, n, const
Ejemplo n.º 18
0
def is_deriv_k(fa, fd, DE):
    """
    Checks if Df/f is the derivative of an element of k(t).

    a in k(t) is the derivative of an element of k(t) if there exists b in k(t)
    such that a = Db.  Either returns (ans, u), such that Df/f == Du, or None,
    which means that Df/f is not the derivative of an element of k(t).  ans is
    a list of tuples such that Add(*[i*j for i, j in ans]) == u.  This is useful
    for seeing exactly which elements of k(t) produce u.

    This function uses the structure theorem approach, which says that for any
    f in K, Df/f is the derivative of a element of K if and only if there are ri
    in QQ such that::

            ---               ---       Dt
            \    r  * Dt   +  \    r  *   i      Df
            /     i     i     /     i   ---   =  --.
            ---               ---        t        f
         i in L            i in E         i
               K/C(x)            K/C(x)


    Where C = Const(K), L_K/C(x) = { i in {1, ..., n} such that t_i is
    transcendental over C(x)(t_1, ..., t_i-1) and Dt_i = Da_i/a_i, for some a_i
    in C(x)(t_1, ..., t_i-1)* } (i.e., the set of all indices of logarithmic
    monomials of K over C(x)), and E_K/C(x) = { i in {1, ..., n} such that t_i
    is transcendental over C(x)(t_1, ..., t_i-1) and Dt_i/t_i = Da_i, for some
    a_i in C(x)(t_1, ..., t_i-1) } (i.e., the set of all indices of
    hyperexponential monomials of K over C(x)).  If K is an elementary extension
    over C(x), then the cardinality of L_K/C(x) U E_K/C(x) is exactly the
    transcendence degree of K over C(x).  Furthermore, because Const_D(K) ==
    Const_D(C(x)) == C, deg(Dt_i) == 1 when t_i is in E_K/C(x) and
    deg(Dt_i) == 0 when t_i is in L_K/C(x), implying in particular that E_K/C(x)
    and L_K/C(x) are disjoint.

    The sets L_K/C(x) and E_K/C(x) must, by their nature, be computed
    recursively using this same function.  Therefore, it is required to pass
    them as indices to D (or T).  E_args are the arguments of the
    hyperexponentials indexed by E_K (i.e., if i is in E_K, then T[i] ==
    exp(E_args[i])).  This is needed to compute the final answer u such that
    Df/f == Du.

    log(f) will be the same as u up to a additive constant.  This is because
    they will both behave the same as monomials. For example, both log(x) and
    log(2*x) == log(x) + log(2) satisfy Dt == 1/x, because log(2) is constant.
    Therefore, the term const is returned.  const is such that
    log(const) + f == u.  This is calculated by dividing the arguments of one
    logarithm from the other.  Therefore, it is necessary to pass the arguments
    of the logarithmic terms in L_args.

    To handle the case where we are given Df/f, not f, use is_deriv_k_in_field().
    """
    # Compute Df/f
    dfa, dfd = fd*(fd*derivation(fa, DE) - fa*derivation(fd, DE)), fd**2*fa
    dfa, dfd = dfa.cancel(dfd, include=True)

    # Our assumption here is that each monomial is recursively transcendental
    if len(DE.L_K) + len(DE.E_K) != len(DE.D) - 1:
        if [i for i in DE.cases if i == 'tan'] or \
                {i for i in DE.cases if i == 'primitive'} - set(DE.L_K):
            raise NotImplementedError("Real version of the structure "
                "theorems with hypertangent support is not yet implemented.")

        # TODO: What should really be done in this case?
        raise NotImplementedError("Nonelementary extensions not supported "
            "in the structure theorems.")

    E_part = [DE.D[i].quo(Poly(DE.T[i], DE.T[i])).as_expr() for i in DE.E_K]
    L_part = [DE.D[i].as_expr() for i in DE.L_K]

    lhs = Matrix([E_part + L_part])
    rhs = Matrix([dfa.as_expr()/dfd.as_expr()])

    A, u = constant_system(lhs, rhs, DE)

    if not all(derivation(i, DE, basic=True).is_zero for i in u) or not A:
        # If the elements of u are not all constant
        # Note: See comment in constant_system

        # Also note: derivation(basic=True) calls cancel()
        return
    else:
        if not all(i.is_Rational for i in u):
            raise NotImplementedError("Cannot work with non-rational "
                "coefficients in this case.")
        else:
            terms = DE.E_args + [DE.T[i] for i in DE.L_K]
            ans = list(zip(terms, u))
            result = Add(*[Mul(i, j) for i, j in ans])
            argterms = [DE.T[i] for i in DE.E_K] + DE.L_args
            l = []
            for i, j in zip(argterms, u):
                # We need to get around things like sqrt(x**2) != x
                # and also sqrt(x**2 + 2*x + 1) != x + 1
                icoeff, iterms = sqf_list(i)
                l.append(Mul(*([Pow(icoeff, j)] + [Pow(b, e*j) for b, e in iterms])))
            const = cancel(fa.as_expr()/fd.as_expr()/Mul(*l))

            return ans, result, const
Ejemplo n.º 19
0
def parametric_log_deriv_heu(fa, fd, wa, wd, DE, c1=None):
    """
    Parametric logarithmic derivative heuristic.

    Given a derivation D on k[t], f in k(t), and a hyperexponential monomial
    theta over k(t), raises either NotImplementedError, in which case the
    heuristic failed, or returns None, in which case it has proven that no
    solution exists, or returns a solution (n, m, v) of the equation
    n*f == Dv/v + m*Dtheta/theta, with v in k(t)* and n, m in ZZ with n != 0.

    If this heuristic fails, the structure theorem approach will need to be
    used.

    The argument w == Dtheta/theta
    """
    # TODO: finish writing this and write tests
    c1 = c1 or Dummy('c1')

    p, a = fa.div(fd)
    q, b = wa.div(wd)

    B = max(0, derivation(DE.t, DE).degree(DE.t) - 1)
    C = max(p.degree(DE.t), q.degree(DE.t))

    if q.degree(DE.t) > B:
        eqs = [p.nth(i) - c1*q.nth(i) for i in range(B + 1, C + 1)]
        s = solve(eqs, c1)
        if not s or not s[c1].is_Rational:
            # deg(q) > B, no solution for c.
            return

        N, M = s[c1].as_numer_denom()  # N and M are integers
        N, M = Poly(N, DE.t), Poly(M, DE.t)

        nfmwa = N*fa*wd - M*wa*fd
        nfmwd = fd*wd
        Qv = is_log_deriv_k_t_radical_in_field(N*fa*wd - M*wa*fd, fd*wd, DE,
            'auto')
        if Qv is None:
            # (N*f - M*w) is not the logarithmic derivative of a k(t)-radical.
            return

        Q, e, v = Qv
        if e != 1:
            return

        if Q.is_zero or v.is_zero:
            return

        return Q*N, Q*M, v

    if p.degree(DE.t) > B:
        return

    c = lcm(fd.as_poly(DE.t).LC(), wd.as_poly(DE.t).LC())
    l = fd.monic().lcm(wd.monic())*Poly(c, DE.t)
    ln, ls = splitfactor(l, DE)
    z = ls*ln.gcd(ln.diff(DE.t))

    if not z.has(DE.t):
        raise NotImplementedError("parametric_log_deriv_heu() "
            "heuristic failed: z in k.")

    u1, r1 = (fa*l.quo(fd)).div(z)  # (l*f).div(z)
    u2, r2 = (wa*l.quo(wd)).div(z)  # (l*w).div(z)

    eqs = [r1.nth(i) - c1*r2.nth(i) for i in range(z.degree(DE.t))]
    s = solve(eqs, c1)
    if not s or not s[c1].is_Rational:
        # deg(q) <= B, no solution for c.
        return

    M, N = s[c1].as_numer_denom()

    nfmwa = N.as_poly(DE.t)*fa*wd - M.as_poly(DE.t)*wa*fd
    nfmwd = fd*wd
    Qv = is_log_deriv_k_t_radical_in_field(nfmwa, nfmwd, DE)
    if Qv is None:
        # (N*f - M*w) is not the logarithmic derivative of a k(t)-radical.
        return

    Q, v = Qv

    if Q.is_zero or v.is_zero:
        return

    return Q*N, Q*M, v
Ejemplo n.º 20
0
                etaa, etad = frac_in(dcoeff, DE.t)

                if recognize_log_derivative(2 * betaa, betad, DE):
                    A = parametric_log_deriv(
                        alphaa * sqrt(-1) * betad + alphad * betaa,
                        alphad * betad, etaa, etad, DE)
                    if A is not None:
                        a, m, z = A
                        if a == 1:
                            n = min(n, m)
    N = max(0, -nb, n - nc)
    pN = p**N
    pn = p**-n

    A = a * pN
    B = ba * pN.quo(bd) + Poly(n, DE.t) * a * derivation(p, DE).quo(p) * pN
    C = (ca * pN * pn).quo(cd)
    h = pn

    # (a*p**N, (b + n*a*Dp/p)*p**N, c*p**(N - n), p**-n)
    return A, B, C, h


def bound_degree(a, b, cQ, DE, case='auto', parametric=False):
    """
    Bound on polynomial solutions.

    Given a derivation D on k[t] and a, b, c in k[t] with a != 0, return
    n in ZZ such that deg(q) <= n for any solution q in k[t] of
    a*Dq + b*q == c, when parametric=False, or deg(q) <= n for any solution
    c1, ..., cm in Const(k) and q in k[t] of a*Dq + b*q == Sum(ci*gi, (i, 1, m))
Ejemplo n.º 21
0
def constant_system(A, u, DE):
    """
    Generate a system for the constant solutions.

    Given a differential field (K, D) with constant field C = Const(K), a Matrix
    A, and a vector (Matrix) u with coefficients in K, returns the tuple
    (B, v, s), where B is a Matrix with coefficients in C and v is a vector
    (Matrix) such that either v has coefficients in C, in which case s is True
    and the solutions in C of Ax == u are exactly all the solutions of Bx == v,
    or v has a non-constant coefficient, in which case s is False Ax == u has no
    constant solution.

    This algorithm is used both in solving parametric problems and in
    determining if an element a of K is a derivative of an element of K or the
    logarithmic derivative of a K-radical using the structure theorem approach.

    Because Poly does not play well with Matrix yet, this algorithm assumes that
    all matrix entries are Basic expressions.
    """
    if not A:
        return A, u
    Au = A.row_join(u)
    Au = Au.rref(simplify=cancel)[0]
    # Warning: This will NOT return correct results if cancel() cannot reduce
    # an identically zero expression to 0.  The danger is that we might
    # incorrectly prove that an integral is nonelementary (such as
    # risch_integrate(exp((sin(x)**2 + cos(x)**2 - 1)*x**2), x).
    # But this is a limitation in computer algebra in general, and implicit
    # in the correctness of the Risch Algorithm is the computability of the
    # constant field (actually, this same correctness problem exists in any
    # algorithm that uses rref()).
    #
    # We therefore limit ourselves to constant fields that are computable
    # via the cancel() function, in order to prevent a speed bottleneck from
    # calling some more complex simplification function (rational function
    # coefficients will fall into this class).  Furthermore, (I believe) this
    # problem will only crop up if the integral explicitly contains an
    # expression in the constant field that is identically zero, but cannot
    # be reduced to such by cancel().  Therefore, a careful user can avoid this
    # problem entirely by being careful with the sorts of expressions that
    # appear in his integrand in the variables other than the integration
    # variable (the structure theorems should be able to completely decide these
    # problems in the integration variable).

    Au = Au.applyfunc(cancel)
    A, u = Au[:, :-1], Au[:, -1]

    for j in range(A.cols):
        for i in range(A.rows):
            if A[i, j].has(*DE.T):
                # This assumes that const(F(t0, ..., tn) == const(K) == F
                Ri = A[i, :]
                # Rm+1; m = A.rows
                Rm1 = Ri.applyfunc(lambda x: derivation(x, DE, basic=True) /
                    derivation(A[i, j], DE, basic=True))
                Rm1 = Rm1.applyfunc(cancel)
                um1 = cancel(derivation(u[i], DE, basic=True) /
                    derivation(A[i, j], DE, basic=True))

                for s in range(A.rows):
                    # A[s, :] = A[s, :] - A[s, i]*A[:, m+1]
                    Asj = A[s, j]
                    A.row_op(s, lambda r, jj: cancel(r - Asj*Rm1[jj]))
                    # u[s] = u[s] - A[s, j]*u[m+1
                    u.row_op(s, lambda r, jj: cancel(r - Asj*um1))

                A = A.col_join(Rm1)
                u = u.col_join(Matrix([um1]))

    return A, u