Ejemplo n.º 1
0
def dmp_sqf_list(f, u, K, all=False):
    """
    Return square-free decomposition of a polynomial in ``K[X]``.

    Examples
    ========

    >>> from diofant.polys import ring, ZZ

    >>> R, x,y = ring("x,y", ZZ)

    >>> f = x**5 + 2*x**4*y + x**3*y**2

    >>> R.dmp_sqf_list(f)
    (1, [(x + y, 2), (x, 3)])
    >>> R.dmp_sqf_list(f, all=True)
    (1, [(1, 1), (x + y, 2), (x, 3)])
    """
    if not u:
        return dup_sqf_list(f, K, all=all)

    if K.is_FiniteField:
        return dmp_gf_sqf_list(f, u, K, all=all)

    if K.has_Field:
        coeff = dmp_ground_LC(f, u, K)
        f = dmp_ground_monic(f, u, K)
    else:
        coeff, f = dmp_ground_primitive(f, u, K)

        if K.is_negative(dmp_ground_LC(f, u, K)):
            f = dmp_neg(f, u, K)
            coeff = -coeff

    if dmp_degree(f, u) <= 0:
        return coeff, []

    result, i = [], 1

    h = dmp_diff(f, 1, u, K)
    g, p, q = dmp_inner_gcd(f, h, u, K)

    while True:
        d = dmp_diff(p, 1, u, K)
        h = dmp_sub(q, d, u, K)

        if dmp_zero_p(h, u):
            result.append((p, i))
            break

        g, p, q = dmp_inner_gcd(p, h, u, K)

        if all or dmp_degree(g, u) > 0:
            result.append((g, i))

        i += 1

    return coeff, result
Ejemplo n.º 2
0
def test_dmp_diff_in():
    assert dmp_diff_in(f_6, 2, 1, 3, ZZ) == \
        dmp_swap(dmp_diff(dmp_swap(f_6, 0, 1, 3, ZZ), 2, 3, ZZ), 0, 1, 3, ZZ)
    assert dmp_diff_in(f_6, 3, 1, 3, ZZ) == \
        dmp_swap(dmp_diff(dmp_swap(f_6, 0, 1, 3, ZZ), 3, 3, ZZ), 0, 1, 3, ZZ)
    assert dmp_diff_in(f_6, 2, 2, 3, ZZ) == \
        dmp_swap(dmp_diff(dmp_swap(f_6, 0, 2, 3, ZZ), 2, 3, ZZ), 0, 2, 3, ZZ)
    assert dmp_diff_in(f_6, 3, 2, 3, ZZ) == \
        dmp_swap(dmp_diff(dmp_swap(f_6, 0, 2, 3, ZZ), 3, 3, ZZ), 0, 2, 3, ZZ)
Ejemplo n.º 3
0
def test_dmp_diff_in():
    assert dmp_diff_in(f_6, 2, 1, 3, ZZ) == \
        dmp_swap(dmp_diff(dmp_swap(f_6, 0, 1, 3, ZZ), 2, 3, ZZ), 0, 1, 3, ZZ)
    assert dmp_diff_in(f_6, 3, 1, 3, ZZ) == \
        dmp_swap(dmp_diff(dmp_swap(f_6, 0, 1, 3, ZZ), 3, 3, ZZ), 0, 1, 3, ZZ)
    assert dmp_diff_in(f_6, 2, 2, 3, ZZ) == \
        dmp_swap(dmp_diff(dmp_swap(f_6, 0, 2, 3, ZZ), 2, 3, ZZ), 0, 2, 3, ZZ)
    assert dmp_diff_in(f_6, 3, 2, 3, ZZ) == \
        dmp_swap(dmp_diff(dmp_swap(f_6, 0, 2, 3, ZZ), 3, 3, ZZ), 0, 2, 3, ZZ)

    pytest.raises(IndexError, lambda: dmp_diff_in(f_6, 2, -1, 3, ZZ))
    pytest.raises(IndexError, lambda: dmp_diff_in(f_6, 2, 1, 0, ZZ))
Ejemplo n.º 4
0
def dmp_sqf_part(f, u, K):
    """
    Returns square-free part of a polynomial in ``K[X]``.

    Examples
    ========

    >>> from diofant.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dmp_sqf_part(x**3 + 2*x**2*y + x*y**2)
    x**2 + x*y

    """
    if not u:
        return dup_sqf_part(f, K)

    if K.is_FiniteField:
        return dmp_gf_sqf_part(f, u, K)

    if dmp_zero_p(f, u):
        return f

    if K.is_negative(dmp_ground_LC(f, u, K)):
        f = dmp_neg(f, u, K)

    gcd = dmp_gcd(f, dmp_diff(f, 1, u, K), u, K)
    sqf = dmp_quo(f, gcd, u, K)

    if K.has_Field:
        return dmp_ground_monic(sqf, u, K)
    else:
        return dmp_ground_primitive(sqf, u, K)[1]
Ejemplo n.º 5
0
def dmp_discriminant(f, u, K):
    """
    Computes discriminant of a polynomial in `K[X]`.

    Examples
    ========

    >>> from diofant.polys import ring, ZZ
    >>> R, x,y,z,t = ring("x,y,z,t", ZZ)

    >>> R.dmp_discriminant(x**2*y + x*z + t)
    -4*y*t + z**2
    """
    if not u:
        return dup_discriminant(f, K)

    d, v = dmp_degree(f, u), u - 1

    if d <= 0:
        return dmp_zero(v)
    else:
        s = (-1)**((d * (d - 1)) // 2)
        c = dmp_LC(f, K)

        r = dmp_resultant(f, dmp_diff(f, 1, u, K), u, K)
        c = dmp_mul_ground(c, K(s), v, K)

        return dmp_quo(r, c, v, K)
Ejemplo n.º 6
0
def dmp_sqf_p(f, u, K):
    """
    Return ``True`` if ``f`` is a square-free polynomial in ``K[X]``.

    Examples
    ========

    >>> from diofant.polys import ring, ZZ
    >>> R, x,y = ring("x,y", ZZ)

    >>> R.dmp_sqf_p(x**2 + 2*x*y + y**2)
    False
    >>> R.dmp_sqf_p(x**2 + y**2)
    True

    """
    if dmp_zero_p(f, u):
        return True
    else:
        return not dmp_degree(dmp_gcd(f, dmp_diff(f, 1, u, K), u, K), u)
Ejemplo n.º 7
0
def test_dmp_diff_eval_in():
    assert dmp_diff_eval_in(f_6, 2, 7, 1, 3, ZZ) == \
        dmp_eval(dmp_diff(dmp_swap(f_6, 0, 1, 3, ZZ), 2, 3, ZZ), 7, 3, ZZ)

    pytest.raises(IndexError, lambda: dmp_diff_eval_in(f_6, 2, 7, 4, 3, ZZ))
Ejemplo n.º 8
0
def test_dmp_diff():
    assert dmp_diff([], 1, 0, ZZ) == []
    assert dmp_diff([[]], 1, 1, ZZ) == [[]]
    assert dmp_diff([[[]]], 1, 2, ZZ) == [[[]]]

    assert dmp_diff([[[1], [2]]], 1, 2, ZZ) == [[[]]]

    assert dmp_diff([[[1]], [[]]], 1, 2, ZZ) == [[[1]]]
    assert dmp_diff([[[3]], [[1]], [[]]], 1, 2, ZZ) == [[[6]], [[1]]]

    assert dmp_diff([1, -1, 0, 0, 2], 1, 0, ZZ) == \
        dup_diff([1, -1, 0, 0, 2], 1, ZZ)

    assert dmp_diff(f_6, 0, 3, ZZ) == f_6
    assert dmp_diff(f_6, 1, 3, ZZ) == dmp_diff(f_6, 1, 3, ZZ)
    assert dmp_diff(
        f_6, 2, 3, ZZ) == dmp_diff(dmp_diff(f_6, 1, 3, ZZ), 1, 3, ZZ)
    assert dmp_diff(f_6, 3, 3, ZZ) == dmp_diff(
        dmp_diff(dmp_diff(f_6, 1, 3, ZZ), 1, 3, ZZ), 1, 3, ZZ)

    K = FF(23)
    F_6 = dmp_normal(f_6, 3, K)

    assert dmp_diff(F_6, 0, 3, K) == F_6
    assert dmp_diff(F_6, 1, 3, K) == dmp_diff(F_6, 1, 3, K)
    assert dmp_diff(F_6, 2, 3, K) == dmp_diff(dmp_diff(F_6, 1, 3, K), 1, 3, K)
    assert dmp_diff(F_6, 3, 3, K) == dmp_diff(
        dmp_diff(dmp_diff(F_6, 1, 3, K), 1, 3, K), 1, 3, K)
Ejemplo n.º 9
0
def test_dmp_diff_eval_in():
    assert dmp_diff_eval_in(f_6, 2, 7, 1, 3, ZZ) == \
        dmp_eval(dmp_diff(dmp_swap(f_6, 0, 1, 3, ZZ), 2, 3, ZZ), 7, 3, ZZ)