Ejemplo n.º 1
0
def test_intersections():
    assert S.Integers.intersect(S.Reals) == S.Integers
    assert 5 in S.Integers.intersect(S.Reals)
    assert 5 in S.Integers.intersect(S.Reals)
    assert -5 not in S.Naturals.intersect(S.Reals)
    assert 5.5 not in S.Integers.intersect(S.Reals)
    assert 5 in S.Integers.intersect(Interval(3, oo))
    assert -5 in S.Integers.intersect(Interval(-oo, 3))
    assert all(x.is_Integer
               for x in take(10, S.Integers.intersect(Interval(3, oo))))
Ejemplo n.º 2
0
def test_intersections():
    assert S.Integers.intersection(S.Reals) == S.Integers
    assert 5 in S.Integers.intersection(S.Reals)
    assert 5 in S.Integers.intersection(S.Reals)
    assert -5 not in S.Naturals.intersection(S.Reals)
    assert 5.5 not in S.Integers.intersection(S.Reals)
    assert 5 in S.Integers.intersection(Interval(3, oo))
    assert -5 in S.Integers.intersection(Interval(-oo, 3))
    assert all(x.is_Integer
               for x in itertools.islice(S.Integers.intersection(Interval(3, oo)), 10))
Ejemplo n.º 3
0
def test_halfcircle():
    r, th = symbols('r, theta', extended_real=True)
    L = Lambda((r, th), (r*cos(th), r*sin(th)))
    halfcircle = ImageSet(L, Interval(0, 1)*Interval(0, pi))

    assert (1, 0) in halfcircle
    assert (0, -1) not in halfcircle
    assert (0, 0) in halfcircle

    assert not halfcircle.is_iterable
Ejemplo n.º 4
0
def test_halfcircle():
    # This test sometimes works and sometimes doesn't.
    # It may be an issue with solve? Maybe with using Lambdas/dummys?
    # I believe the code within fancysets is correct
    r, th = symbols('r, theta', extended_real=True)
    L = Lambda((r, th), (r*cos(th), r*sin(th)))
    halfcircle = ImageSet(L, Interval(0, 1)*Interval(0, pi))

    assert (1, 0) in halfcircle
    assert (0, -1) not in halfcircle
    assert (0, 0) in halfcircle

    assert not halfcircle.is_iterable
Ejemplo n.º 5
0
    def _intersect(self, other):
        from diofant.functions.elementary.integers import floor, ceiling
        from diofant.functions.elementary.miscellaneous import Min, Max
        if other.is_Interval:
            osup = other.sup
            oinf = other.inf
            # if other is [0, 10) we can only go up to 9
            if osup.is_integer and other.right_open:
                osup -= 1
            if oinf.is_integer and other.left_open:
                oinf += 1

            # Take the most restrictive of the bounds set by the two sets
            # round inwards
            inf = ceiling(Max(self.inf, oinf))
            sup = floor(Min(self.sup, osup))
            # if we are off the sequence, get back on
            if inf.is_finite and self.inf.is_finite:
                off = (inf - self.inf) % self.step
            else:
                off = S.Zero
            if off:
                inf += self.step - off

            return Range(inf, sup + 1, self.step)

        if other == S.Naturals:
            return self._intersect(Interval(1, S.Infinity, False, True))

        if other == S.Integers:
            return self

        return
Ejemplo n.º 6
0
def test_naturals():
    N = S.Naturals
    assert 5 in N
    assert -5 not in N
    assert 5.5 not in N
    ni = iter(N)
    a, b, c, d = next(ni), next(ni), next(ni), next(ni)
    assert (a, b, c, d) == (1, 2, 3, 4)
    assert isinstance(a, Basic)

    assert N.intersect(Interval(-5, 5)) == Range(1, 6)
    assert N.intersect(Interval(-5, 5, True, True)) == Range(1, 5)

    assert N.boundary == N

    assert N.inf == 1
    assert N.sup == oo
Ejemplo n.º 7
0
def test_integers():
    Z = S.Integers
    assert 5 in Z
    assert -5 in Z
    assert 5.5 not in Z
    zi = iter(Z)
    a, b, c, d = next(zi), next(zi), next(zi), next(zi)
    assert (a, b, c, d) == (0, 1, -1, 2)
    assert isinstance(a, Basic)

    assert Z.intersect(Interval(-5, 5)) == Range(-5, 6)
    assert Z.intersect(Interval(-5, 5, True, True)) == Range(-4, 5)

    assert Z.inf == -oo
    assert Z.sup == oo

    assert Z.boundary == Z
Ejemplo n.º 8
0
 def _intersect(self, other):
     from diofant.functions.elementary.integers import floor, ceiling
     if other is Interval(S.NegativeInfinity, S.Infinity, True,
                          True) or other is S.Reals:
         return self
     elif other.is_Interval:
         s = Range(ceiling(other.left), floor(other.right) + 1)
         return s.intersect(other)  # take out endpoints if open interval
     return
Ejemplo n.º 9
0
def test_univariate_relational_as_set():
    assert (x > 0).as_set() == Interval(0, oo, True, True)
    assert (x >= 0).as_set() == Interval(0, oo, False, True)
    assert (x < 0).as_set() == Interval(-oo, 0, True, True)
    assert (x <= 0).as_set() == Interval(-oo, 0, True)
    assert Eq(x, 0).as_set() == FiniteSet(0)
    assert Ne(x, 0).as_set() == Interval(-oo, 0, True, True) + \
        Interval(0, oo, True, True)

    assert (x**2 >= 4).as_set() == (Interval(-oo, -2, True) +
                                    Interval(2, oo, False, True))
Ejemplo n.º 10
0
def test_range_interval_intersection():
    # Intersection with intervals
    assert FiniteSet(*Range(0, 10, 1).intersect(Interval(2, 6))) == \
        FiniteSet(2, 3, 4, 5, 6)

    # Open Intervals are removed
    assert (FiniteSet(*Range(0, 10, 1).intersect(Interval(2, 6,
                                                          True, True))) ==
            FiniteSet(3, 4, 5))

    # Try this with large steps
    assert (FiniteSet(*Range(0, 100, 10).intersect(Interval(15, 55))) ==
            FiniteSet(20, 30, 40, 50))

    # Going backwards
    assert (FiniteSet(*Range(10, -9, -3).intersect(Interval(-5, 6))) ==
            FiniteSet(-5, -2, 1, 4))
    assert (FiniteSet(*Range(10, -9, -3).intersect(Interval(-5, 6, True))) ==
            FiniteSet(-2, 1, 4))
Ejemplo n.º 11
0
def test_integers():
    Z = S.Integers
    assert 5 in Z
    assert -5 in Z
    assert 5.5 not in Z
    zi = iter(Z)
    a, b, c, d = next(zi), next(zi), next(zi), next(zi)
    assert (a, b, c, d) == (0, 1, -1, 2)
    assert isinstance(a, Basic)

    assert Z.intersection(Interval(-5, 5)) == Range(-5, 6)
    assert Z.intersection(Interval(-5, 5, True, True)) == Range(-4, 5)
    assert Z.intersection(Set(x)) == Intersection(Z, Set(x), evaluate=False)

    assert Z.inf == -oo
    assert Z.sup == oo

    assert Z.boundary == Z

    assert imageset(Lambda((x, y), x * y),
                    Z) == ImageSet(Lambda((x, y), x * y), Z)
Ejemplo n.º 12
0
def test_sympyissue_11732():
    interval12 = Interval(1, 2)
    finiteset1234 = FiniteSet(1, 2, 3, 4)
    pointComplex = (1, 2)

    assert (interval12 in S.Naturals) is False
    assert (interval12 in S.Naturals0) is False
    assert (interval12 in S.Integers) is False

    assert (finiteset1234 in S.Naturals) is False
    assert (finiteset1234 in S.Naturals0) is False
    assert (finiteset1234 in S.Integers) is False

    assert (pointComplex in S.Naturals) is False
    assert (pointComplex in S.Naturals0) is False
    assert (pointComplex in S.Integers) is False
Ejemplo n.º 13
0
def test_ImageSet():
    squares = ImageSet(Lambda(x, x**2), S.Naturals)
    assert 4 in squares
    assert 5 not in squares
    assert FiniteSet(*range(10)).intersect(squares) == FiniteSet(1, 4, 9)

    assert 16 not in squares.intersect(Interval(0, 10))

    si = iter(squares)
    a, b, c, d = next(si), next(si), next(si), next(si)
    assert (a, b, c, d) == (1, 4, 9, 16)

    harmonics = ImageSet(Lambda(x, 1/x), S.Naturals)
    assert Rational(1, 5) in harmonics
    assert Rational(.25) in harmonics
    assert 0.25 not in harmonics
    assert Rational(.3) not in harmonics

    assert harmonics.is_iterable
Ejemplo n.º 14
0
 def _intersect(self, other):
     if other.is_Interval:
         return Intersection(S.Integers, other,
                             Interval(self._inf, S.Infinity, False, True))
     return
Ejemplo n.º 15
0
def bspline_basis(d, knots, n, x, close=True):
    """The `n`-th B-spline at `x` of degree `d` with knots.

    B-Splines are piecewise polynomials of degree `d` [1]_.  They are defined on
    a set of knots, which is a sequence of integers or floats.

    The 0th degree splines have a value of one on a single interval:

        >>> from diofant import bspline_basis
        >>> from diofant.abc import x
        >>> d = 0
        >>> knots = range(5)
        >>> bspline_basis(d, knots, 0, x)
        Piecewise((1, And(x <= 1, x >= 0)), (0, true))

    For a given ``(d, knots)`` there are ``len(knots)-d-1`` B-splines defined, that
    are indexed by ``n`` (starting at 0).

    Here is an example of a cubic B-spline:

        >>> bspline_basis(3, range(5), 0, x)
        Piecewise((x**3/6, And(x < 1, x >= 0)),
                  (-x**3/2 + 2*x**2 - 2*x + 2/3, And(x < 2, x >= 1)),
                  (x**3/2 - 4*x**2 + 10*x - 22/3, And(x < 3, x >= 2)),
                  (-x**3/6 + 2*x**2 - 8*x + 32/3, And(x <= 4, x >= 3)),
                  (0, true))

    By repeating knot points, you can introduce discontinuities in the
    B-splines and their derivatives:

        >>> d = 1
        >>> knots = [0,0,2,3,4]
        >>> bspline_basis(d, knots, 0, x)
        Piecewise((-x/2 + 1, And(x <= 2, x >= 0)), (0, true))

    It is quite time consuming to construct and evaluate B-splines. If you
    need to evaluate a B-splines many times, it is best to lambdify them
    first:

        >>> from diofant import lambdify
        >>> d = 3
        >>> knots = range(10)
        >>> b0 = bspline_basis(d, knots, 0, x)
        >>> f = lambdify(x, b0)
        >>> y = f(0.5)

    See Also
    ========

    diofant.functions.special.bsplines.bspline_basis_set

    References
    ==========

    .. [1] http://en.wikipedia.org/wiki/B-spline

    """
    knots = [sympify(k) for k in knots]
    d = int(d)
    n = int(n)
    n_knots = len(knots)
    n_intervals = n_knots - 1
    if n + d + 1 > n_intervals:
        raise ValueError('n + d + 1 must not exceed len(knots) - 1')
    if d == 0:
        result = Piecewise(
            (S.One, Interval(knots[n], knots[n + 1], False,
                             not close).contains(x)), (0, True))
    elif d > 0:
        denom = knots[n + d + 1] - knots[n + 1]
        if denom != S.Zero:
            B = (knots[n + d + 1] - x) / denom
            b2 = bspline_basis(d - 1, knots, n + 1, x, close)
        else:
            b2 = B = S.Zero

        denom = knots[n + d] - knots[n]
        if denom != S.Zero:
            A = (x - knots[n]) / denom
            b1 = bspline_basis(d - 1, knots, n, x, close
                               and (B == S.Zero or b2 == S.Zero))
        else:
            b1 = A = S.Zero

        result = _add_splines(A, b1, B, b2)
    else:
        raise ValueError('degree must be non-negative: %r' % n)
    return result
Ejemplo n.º 16
0
def test_core_interval():
    for c in (Interval, Interval(0, 2)):
        check(c)
Ejemplo n.º 17
0
def test_multivariate_relational_as_set():
    assert (x*y >= 0).as_set() == Interval(0, oo)*Interval(0, oo) + \
        Interval(-oo, 0)*Interval(-oo, 0)