Ejemplo n.º 1
0
def test_exptrigsimp():
    def valid(a, b):
        from diofant.utilities.randtest import verify_numerically as tn
        if not (tn(a, b) and a == b):
            return False
        return True

    assert exptrigsimp(exp(x) + exp(-x)) == 2 * cosh(x)
    assert exptrigsimp(exp(x) - exp(-x)) == 2 * sinh(x)
    e = [
        cos(x) + I * sin(x),
        cos(x) - I * sin(x),
        cosh(x) - sinh(x),
        cosh(x) + sinh(x)
    ]
    ok = [exp(I * x), exp(-I * x), exp(-x), exp(x)]
    assert all(valid(i, j) for i, j in zip([exptrigsimp(ei) for ei in e], ok))

    ue = [
        cos(x) + sin(x),
        cos(x) - sin(x),
        cosh(x) + I * sinh(x),
        cosh(x) - I * sinh(x)
    ]
    assert [exptrigsimp(ei) == ei for ei in ue]

    res = []
    ok = [
        y * tanh(1), 1 / (y * tanh(1)), I * y * tan(1), -I / (y * tan(1)),
        y * tanh(x), 1 / (y * tanh(x)), I * y * tan(x), -I / (y * tan(x)),
        y * tanh(1 + I), 1 / (y * tanh(1 + I))
    ]
    for a in (1, I, x, I * x, 1 + I):
        w = exp(a)
        eq = y * (w - 1 / w) / (w + 1 / w)
        s = simplify(eq)
        assert s == exptrigsimp(eq)
        res.append(s)
        sinv = simplify(1 / eq)
        assert sinv == exptrigsimp(1 / eq)
        res.append(sinv)
    assert all(valid(i, j) for i, j in zip(res, ok))

    for a in range(1, 3):
        w = exp(a)
        e = w + 1 / w
        s = simplify(e)
        assert s == exptrigsimp(e)
        assert valid(s, 2 * cosh(a))
        e = w - 1 / w
        s = simplify(e)
        assert s == exptrigsimp(e)
        assert valid(s, 2 * sinh(a))
Ejemplo n.º 2
0
def test_exptrigsimp():
    def valid(a, b):
        if not (tn(a, b) and a == b):
            return False
        return True

    assert exptrigsimp(exp(x) + exp(-x)) == 2*cosh(x)
    assert exptrigsimp(exp(x) - exp(-x)) == 2*sinh(x)
    e = [cos(x) + I*sin(x), cos(x) - I*sin(x),
         cosh(x) - sinh(x), cosh(x) + sinh(x)]
    ok = [exp(I*x), exp(-I*x), exp(-x), exp(x)]
    assert all(valid(i, j) for i, j in zip(
        [exptrigsimp(ei) for ei in e], ok))

    ue = [cos(x) + sin(x), cos(x) - sin(x),
          cosh(x) + I*sinh(x), cosh(x) - I*sinh(x)]
    assert [exptrigsimp(ei) == ei for ei in ue]

    res = []
    ok = [y*tanh(1), 1/(y*tanh(1)), I*y*tan(1), -I/(y*tan(1)),
          y*tanh(x), 1/(y*tanh(x)), I*y*tan(x), -I/(y*tan(x)),
          y*tanh(1 + I), 1/(y*tanh(1 + I))]
    for a in (1, I, x, I*x, 1 + I):
        w = exp(a)
        eq = y*(w - 1/w)/(w + 1/w)
        s = simplify(eq)
        assert s == exptrigsimp(eq)
        res.append(s)
        sinv = simplify(1/eq)
        assert sinv == exptrigsimp(1/eq)
        res.append(sinv)
    assert all(valid(i, j) for i, j in zip(res, ok))

    for a in range(1, 3):
        w = exp(a)
        e = w + 1/w
        s = simplify(e)
        assert s == exptrigsimp(e)
        assert valid(s, 2*cosh(a))
        e = w - 1/w
        s = simplify(e)
        assert s == exptrigsimp(e)
        assert valid(s, 2*sinh(a))
Ejemplo n.º 3
0
def test_sympyissue_2827_trigsimp_methods():
    def measure1(expr):
        return len(str(expr))

    def measure2(expr):
        return -count_ops(expr)  # Return the most complicated result

    expr = (x + 1) / (x + sin(x)**2 + cos(x)**2)
    ans = Matrix([1])
    M = Matrix([expr])
    assert trigsimp(M, method='fu', measure=measure1) == ans
    assert trigsimp(M, method='fu', measure=measure2) != ans
    # all methods should work with Basic expressions even if they
    # aren't Expr
    M = Matrix.eye(1)
    assert all(
        trigsimp(M, method=m) == M for m in 'fu matching groebner old'.split())
    # watch for E in exptrigsimp, not only exp()
    eq = 1 / sqrt(E) + E
    assert exptrigsimp(eq) == eq
Ejemplo n.º 4
0
def test_sympyissue_2827_trigsimp_methods():
    def measure1(expr):
        return len(str(expr))

    def measure2(expr):
        return -count_ops(expr)  # Return the most complicated result

    expr = (x + 1)/(x + sin(x)**2 + cos(x)**2)
    ans = Matrix([1])
    M = Matrix([expr])
    assert trigsimp(M, method='fu', measure=measure1) == ans
    assert trigsimp(M, method='fu', measure=measure2) != ans
    # all methods should work with Basic expressions even if they
    # aren't Expr
    M = Matrix.eye(1)
    assert all(trigsimp(M, method=m) == M for m in
               'fu matching groebner old'.split())
    # watch for E in exptrigsimp, not only exp()
    eq = 1/sqrt(E) + E
    assert exptrigsimp(eq) == eq