Ejemplo n.º 1
0
    def _encode_board(self, board_state, name, reuse=None):
        """ Encodes a board state or prev orders state
            :param board_state: The board state / prev orders state to encode - (batch, NB_NODES, initial_features)
            :param name: The name to use for the encoding
            :param reuse: Whether to reuse or not the weights from another encoding operation
            :return: The encoded board state / prev_orders state
        """
        from diplomacy_research.utils.tensorflow import tf
        from diplomacy_research.models.layers.graph_convolution import GraphConvolution, preprocess_adjacency

        # Quick function to retrieve hparams and placeholders and function shorthands
        hps = lambda hparam_name: self.hparams[hparam_name]
        relu = tf.nn.relu

        # Computing norm adjacency
        norm_adjacency = preprocess_adjacency(get_adjacency_matrix())
        norm_adjacency = tf.tile(tf.expand_dims(norm_adjacency, axis=0), [tf.shape(board_state)[0], 1, 1])

        # Building scope
        scope = tf.VariableScope(name='policy/%s' % name, reuse=reuse)
        with tf.variable_scope(scope):
            batch_size = tf.shape(board_state)[0]

            # Adding noise to break symmetry
            board_state = board_state + tf.random_normal(tf.shape(board_state), stddev=0.01)

            # Projecting (if needed) to 'gcn_size'
            if board_state.shape[-1].value == NB_FEATURES:
                with tf.variable_scope('proj', reuse=tf.AUTO_REUSE):
                    proj_w = tf.get_variable('W', shape=[1, NB_FEATURES, hps('gcn_size')], dtype=tf.float32)
                graph_conv = relu(tf.matmul(board_state, tf.tile(proj_w, [batch_size, 1, 1])))
            else:
                graph_conv = board_state

            # First and intermediate layers
            for _ in range(hps('nb_graph_conv') - 1):
                graph_conv = GraphConvolution(input_dim=hps('gcn_size'),                    # (b, NB_NODES, gcn_size)
                                              output_dim=hps('gcn_size'),
                                              norm_adjacency=norm_adjacency,
                                              activation_fn=relu,
                                              residual=True,
                                              bias=True)(graph_conv)

            # Last Layer
            graph_conv = GraphConvolution(input_dim=hps('gcn_size'),                        # (b, NB_NODES, final_size)
                                          output_dim=hps('attn_size') // 2,
                                          norm_adjacency=norm_adjacency,
                                          activation_fn=relu,
                                          residual=False,
                                          bias=True)(graph_conv)

        # Returning
        return graph_conv
Ejemplo n.º 2
0
    def _encode_board(self, board_state, name, reuse=None):
        """ Encodes a board state or prev orders state
            :param board_state: The board state / prev orders state to encode - (batch, NB_NODES, initial_features)
            :param name: The name to use for the encoding
            :param reuse: Whether to reuse or not the weights from another encoding operation
            :return: The encoded board state / prev_orders state
        """
        from diplomacy_research.utils.tensorflow import tf
        from diplomacy_research.models.layers.graph_convolution import film_gcn_res_block, preprocess_adjacency

        # Quick function to retrieve hparams and placeholders and function shorthands
        hps = lambda hparam_name: self.hparams[hparam_name]
        pholder = lambda placeholder_name: self.placeholders[placeholder_name]
        relu = tf.nn.relu

        # Getting film gammas and betas
        film_gammas = self.outputs['_%s_film_gammas' % name]
        film_betas = self.outputs['_%s_film_betas' % name]

        # Computing norm adjacency
        norm_adjacency = preprocess_adjacency(get_adjacency_matrix())
        norm_adjacency = tf.tile(tf.expand_dims(norm_adjacency, axis=0),
                                 [tf.shape(board_state)[0], 1, 1])

        # Building scope
        scope = tf.VariableScope(name='policy/%s' % name, reuse=reuse)
        with tf.variable_scope(scope):

            # Adding noise to break symmetry
            board_state = board_state + tf.random_normal(tf.shape(board_state),
                                                         stddev=0.01)
            graph_conv = tf.layers.Dense(units=hps('gcn_size'),
                                         activation=relu)(board_state)

            # First and intermediate layers
            for layer_idx in range(hps('nb_graph_conv') - 1):
                graph_conv = film_gcn_res_block(
                    inputs=graph_conv,  # (b, NB_NODES, gcn_size)
                    gamma=film_gammas[layer_idx],
                    beta=film_betas[layer_idx],
                    gcn_out_dim=hps('gcn_size'),
                    norm_adjacency=norm_adjacency,
                    is_training=pholder('is_training'),
                    residual=True)

            # Last layer
            graph_conv = film_gcn_res_block(
                inputs=graph_conv,  # (b, NB_NODES, final_size)
                gamma=film_gammas[-1],
                beta=film_betas[-1],
                gcn_out_dim=hps('attn_size') // 2,
                norm_adjacency=norm_adjacency,
                is_training=pholder('is_training'),
                residual=False)

        # Returning
        return graph_conv
Ejemplo n.º 3
0
    def _encode_board(self, board_state, name, reuse=None):
        """ Encodes a board state or prev orders state
            :param board_state: The board state / prev orders state to encode - (batch, NB_NODES, initial_features)
            :param name: The name to use for the encoding
            :param reuse: Whether to reuse or not the weights from another encoding operation
            :return: The encoded board state / prev_orders state
        """
        from diplomacy_research.utils.tensorflow import tf
        from diplomacy_research.models.layers.graph_convolution import GraphConvolution, preprocess_adjacency
        from diplomacy_research.utils.tensorflow import batch_norm

        # Quick function to retrieve hparams and placeholders and function shorthands
        hps = lambda hparam_name: self.hparams[hparam_name]
        pholder = lambda placeholder_name: self.placeholders[placeholder_name]
        relu = tf.nn.relu

        # Computing norm adjacency
        norm_adjacency = preprocess_adjacency(get_adjacency_matrix())
        norm_adjacency = tf.tile(tf.expand_dims(norm_adjacency, axis=0), [tf.shape(board_state)[0], 1, 1])

        # Building scope
        scope = tf.VariableScope(name='policy/%s' % name, reuse=reuse)
        with tf.variable_scope(scope):

            # Adding noise to break symmetry
            board_state = board_state + tf.random_normal(tf.shape(board_state), stddev=0.01)
            graph_conv = board_state

            # First Layer
            graph_conv = GraphConvolution(input_dim=graph_conv.shape[-1].value,             # (b, NB_NODES, gcn_size)
                                          output_dim=hps('gcn_size'),
                                          norm_adjacency=norm_adjacency,
                                          activation_fn=relu,
                                          bias=True)(graph_conv)

            # Intermediate Layers
            for _ in range(1, hps('nb_graph_conv') - 1):
                graph_conv = GraphConvolution(input_dim=hps('gcn_size'),                    # (b, NB_NODES, gcn_size)
                                              output_dim=hps('gcn_size'),
                                              norm_adjacency=norm_adjacency,
                                              activation_fn=relu,
                                              bias=True)(graph_conv)
                graph_conv = batch_norm(graph_conv, is_training=pholder('is_training'), fused=True)

            # Final Layer
            graph_conv = GraphConvolution(input_dim=hps('gcn_size'),                        # (b, NB_NODES, attn_size)
                                          output_dim=hps('attn_size'),
                                          norm_adjacency=norm_adjacency,
                                          activation_fn=None,
                                          bias=True)(graph_conv)

        # Returning
        return graph_conv
Ejemplo n.º 4
0
    def _build_draw_initial(self):
        """ Builds the draw model (initial step) """
        from diplomacy_research.utils.tensorflow import tf
        from diplomacy_research.models.layers.graph_convolution import GraphConvolution, preprocess_adjacency
        from diplomacy_research.utils.tensorflow import to_float

        if not self.placeholders:
            self.placeholders = self.get_placeholders()
        else:
            self.placeholders.update(self.get_placeholders())

        # Quick function to retrieve hparams and placeholders and function shorthands
        hps = lambda hparam_name: self.hparams[hparam_name]
        pholder = lambda placeholder_name: self.placeholders[placeholder_name]
        relu = tf.nn.relu
        sigmoid = tf.nn.sigmoid

        # Training loop
        with tf.variable_scope('draw', reuse=tf.AUTO_REUSE):
            with tf.device(self.cluster_config.worker_device if self.
                           cluster_config else None):

                # Features
                board_state = to_float(
                    self.features['board_state']
                )  # tf.float32 - (b, NB_NODES, NB_FEATURES)
                current_power = self.features[
                    'current_power']  # tf.int32   - (b,)
                draw_target = self.features['draw_target']  # tf.float32 - (b,)

                # Placeholders
                stop_gradient_all = pholder('stop_gradient_all')

                # Norm Adjacency
                batch_size = tf.shape(board_state)[0]
                norm_adjacency = preprocess_adjacency(get_adjacency_matrix())
                norm_adjacency = tf.tile(
                    tf.expand_dims(norm_adjacency, axis=0), [batch_size, 1, 1])

                # Graph embeddings
                with tf.variable_scope('graph_conv_scope'):
                    board_state_h0 = board_state  # (b, 81, 35)
                    board_state_h1 = GraphConvolution(
                        input_dim=NB_FEATURES,
                        output_dim=hps('draw_gcn_1_output_size'),
                        norm_adjacency=norm_adjacency,
                        activation_fn=relu,
                        bias=True)(board_state_h0)  # (b, 81, 25)

                    # board_state_h2: (b, 2025)
                    # board_state_h3: (b, 128)
                    board_state_h2 = tf.reshape(
                        board_state_h1,
                        shape=[-1, NB_NODES * hps('draw_gcn_1_output_size')])
                    board_state_graph_conv = tf.layers.Dense(
                        units=hps('draw_embedding_size'),
                        activation=relu,
                        use_bias=True)(board_state_h2)

                # Calculating draw for all powers
                with tf.variable_scope('draw_scope'):
                    current_power_mask = tf.one_hot(current_power,
                                                    NB_POWERS,
                                                    dtype=tf.float32)

                    draw_h0 = board_state_graph_conv  # (b, 128)
                    draw_h1 = tf.layers.Dense(
                        units=hps('draw_h1_size'),  # (b, 64)
                        activation=relu,
                        use_bias=True)(draw_h0)
                    draw_h2 = tf.layers.Dense(
                        units=hps('draw_h2_size'),  # (b, 64)
                        activation=relu,
                        use_bias=True)(draw_h1)
                    draw_probs = tf.layers.Dense(
                        units=NB_POWERS,  # (b, 7)
                        activation=sigmoid,
                        use_bias=True)(draw_h2)
                    draw_prob = tf.reduce_sum(draw_probs * current_power_mask,
                                              axis=1)  # (b,)

                # Computing draw loss
                with tf.variable_scope('draw_loss'):
                    draw_loss = tf.reduce_mean(
                        tf.square(draw_target - draw_prob))
                    draw_loss = tf.cond(
                        stop_gradient_all,
                        lambda: tf.stop_gradient(draw_loss),  # pylint: disable=cell-var-from-loop
                        lambda: draw_loss)  # pylint: disable=cell-var-from-loop

        # Building output tags
        outputs = {
            'tag/draw/v001_draw_relu': True,
            'draw_prob': draw_prob,
            'draw_loss': draw_loss
        }

        # Adding features, placeholders and outputs to graph
        self.add_meta_information(outputs)
Ejemplo n.º 5
0
    def _build_policy_initial(self):
        """ Builds the policy model (initial step) """
        from diplomacy_research.utils.tensorflow import tf
        from diplomacy_research.models.layers.initializers import uniform
        from diplomacy_research.utils.tensorflow import pad_axis, to_int32, to_float, to_bool

        if not self.placeholders:
            self.placeholders = self.get_placeholders()

        # Quick function to retrieve hparams and placeholders and function shorthands
        hps = lambda hparam_name: self.hparams[hparam_name]
        pholder = lambda placeholder_name: self.placeholders[placeholder_name]

        # Training loop
        with tf.variable_scope('policy', reuse=tf.AUTO_REUSE):
            with tf.device(self.cluster_config.worker_device if self.
                           cluster_config else None):

                # Features
                board_state = to_float(
                    self.features['board_state']
                )  # tf.flt32 - (b, NB_NODES, NB_FEATURES)
                board_alignments = to_float(
                    self.features['board_alignments'])  # (b, NB_NODES * len)
                prev_orders_state = to_float(
                    self.features['prev_orders_state']
                )  # (b, NB_PRV_OD, NB_ND, NB_OD_FT)
                decoder_inputs = self.features[
                    'decoder_inputs']  # tf.int32 - (b, <= 1 + NB_SCS)
                decoder_lengths = self.features[
                    'decoder_lengths']  # tf.int32 - (b,)
                candidates = self.features[
                    'candidates']  # tf.int32 - (b, nb_locs * MAX_CANDIDATES)
                current_power = self.features[
                    'current_power']  # tf.int32 - (b,)
                current_season = self.features[
                    'current_season']  # tf.int32 - (b,)
                dropout_rates = self.features[
                    'dropout_rate']  # tf.flt32 - (b,)

                # Batch size
                batch_size = tf.shape(board_state)[0]

                # Reshaping board alignments
                board_alignments = tf.reshape(board_alignments,
                                              [batch_size, -1, NB_NODES])
                board_alignments /= tf.math.maximum(
                    1., tf.reduce_sum(board_alignments, axis=-1,
                                      keepdims=True))

                # Overriding dropout_rates if pholder('dropout_rate') > 0
                dropout_rates = tf.cond(
                    tf.greater(pholder('dropout_rate'), 0.),
                    true_fn=lambda: tf.zeros_like(dropout_rates) + pholder(
                        'dropout_rate'),
                    false_fn=lambda: dropout_rates)

                # Padding decoder_inputs and candidates
                board_alignments = pad_axis(
                    board_alignments,
                    axis=1,
                    min_size=tf.reduce_max(decoder_lengths))
                decoder_inputs = pad_axis(decoder_inputs, axis=-1, min_size=2)
                candidates = pad_axis(candidates,
                                      axis=-1,
                                      min_size=MAX_CANDIDATES)

                # Making sure all RNN lengths are at least 1
                # No need to trim, because the fields are variable length
                raw_decoder_lengths = decoder_lengths
                decoder_lengths = tf.math.maximum(1, decoder_lengths)

                # Placeholders
                decoder_type = tf.reduce_max(pholder('decoder_type'))
                is_training = pholder('is_training')

                # Reshaping candidates
                candidates = tf.reshape(candidates,
                                        [batch_size, -1, MAX_CANDIDATES])
                candidates = candidates[:, :tf.reduce_max(
                    decoder_lengths), :]  # tf.int32 - (b, nb_locs, MAX_CAN)

                # Computing FiLM Gammas and Betas
                with tf.variable_scope('film_scope'):
                    power_embedding = uniform(
                        name='power_embedding',
                        shape=[NB_POWERS, hps('power_emb_size')],
                        scale=1.)
                    current_power_mask = tf.one_hot(current_power,
                                                    NB_POWERS,
                                                    dtype=tf.float32)
                    current_power_embedding = tf.reduce_sum(
                        power_embedding[None] * current_power_mask[:, :, None],
                        axis=1)  # (b, power_emb)
                    film_embedding_input = current_power_embedding

                    # Also conditioning on current_season
                    season_embedding = uniform(
                        name='season_embedding',
                        shape=[NB_SEASONS, hps('season_emb_size')],
                        scale=1.)
                    current_season_mask = tf.one_hot(current_season,
                                                     NB_SEASONS,
                                                     dtype=tf.float32)
                    current_season_embedding = tf.reduce_sum(
                        season_embedding[None]  # (b,season_emb)
                        * current_season_mask[:, :, None],
                        axis=1)
                    film_embedding_input = tf.concat(
                        [film_embedding_input, current_season_embedding],
                        axis=1)

                    film_output_dims = [hps('gcn_size')] * (
                        hps('nb_graph_conv') - 1) + [hps('attn_size') // 2]

                    # For board_state
                    board_film_weights = tf.layers.Dense(
                        units=2 * sum(film_output_dims),  # (b, 1, 750)
                        use_bias=True,
                        activation=None)(film_embedding_input)[:, None, :]
                    board_film_gammas, board_film_betas = tf.split(
                        board_film_weights, 2, axis=2)  # (b, 1, 750)
                    board_film_gammas = tf.split(board_film_gammas,
                                                 film_output_dims,
                                                 axis=2)
                    board_film_betas = tf.split(board_film_betas,
                                                film_output_dims,
                                                axis=2)

                    # For prev_orders
                    prev_ord_film_weights = tf.layers.Dense(
                        units=2 * sum(film_output_dims),  # (b, 1, 750)
                        use_bias=True,
                        activation=None)(film_embedding_input)[:, None, :]
                    prev_ord_film_weights = tf.tile(
                        prev_ord_film_weights,
                        [NB_PREV_ORDERS, 1, 1])  # (n_pr, 1, 750)
                    prev_ord_film_gammas, prev_ord_film_betas = tf.split(
                        prev_ord_film_weights, 2, axis=2)
                    prev_ord_film_gammas = tf.split(prev_ord_film_gammas,
                                                    film_output_dims,
                                                    axis=2)
                    prev_ord_film_betas = tf.split(prev_ord_film_betas,
                                                   film_output_dims,
                                                   axis=2)

                    # Storing as temporary output
                    self.add_output('_board_state_conv_film_gammas',
                                    board_film_gammas)
                    self.add_output('_board_state_conv_film_betas',
                                    board_film_betas)
                    self.add_output('_prev_orders_conv_film_gammas',
                                    prev_ord_film_gammas)
                    self.add_output('_prev_orders_conv_film_betas',
                                    prev_ord_film_betas)

                # Creating graph convolution
                with tf.variable_scope('graph_conv_scope'):
                    assert hps('nb_graph_conv') >= 2
                    assert hps('attn_size') % 2 == 0

                    # Encoding board state
                    board_state_0yr_conv = self.encode_board(
                        board_state, name='board_state_conv')

                    # Encoding prev_orders
                    prev_orders_state = tf.reshape(prev_orders_state, [
                        batch_size * NB_PREV_ORDERS, NB_NODES,
                        NB_ORDERS_FEATURES
                    ])
                    prev_ord_conv = self.encode_board(prev_orders_state,
                                                      name='prev_orders_conv')

                    # Splitting back into (b, nb_prev, NB_NODES, attn_size // 2)
                    # Reducing the prev ord conv using avg
                    prev_ord_conv = tf.reshape(prev_ord_conv, [
                        batch_size, NB_PREV_ORDERS, NB_NODES,
                        hps('attn_size') // 2
                    ])
                    prev_ord_conv = tf.reduce_mean(prev_ord_conv, axis=1)

                    # Concatenating the current board conv with the prev ord conv
                    # The final board_state_conv should be of dimension (b, NB_NODE, attn_size)
                    board_state_conv = self.get_board_state_conv(
                        board_state_0yr_conv, is_training, prev_ord_conv)

                # Creating order embedding vector (to embed order_ix)
                # Embeddings needs to be cached locally on the worker, otherwise TF can't compute their gradients
                with tf.variable_scope('order_embedding_scope'):
                    # embedding:    (order_vocab_size, 64)
                    caching_device = self.cluster_config.caching_device if self.cluster_config else None
                    partitioner = tf.fixed_size_partitioner(
                        NB_PARTITIONS) if hps('use_partitioner') else None
                    order_embedding = uniform(
                        name='order_embedding',
                        shape=[ORDER_VOCABULARY_SIZE,
                               hps('order_emb_size')],
                        scale=1.,
                        partitioner=partitioner,
                        caching_device=caching_device)

                # Creating candidate embedding
                with tf.variable_scope('candidate_embedding_scope'):
                    # embedding:    (order_vocab_size, 64)
                    caching_device = self.cluster_config.caching_device if self.cluster_config else None
                    partitioner = tf.fixed_size_partitioner(
                        NB_PARTITIONS) if hps('use_partitioner') else None
                    candidate_embedding = uniform(
                        name='candidate_embedding',
                        shape=[ORDER_VOCABULARY_SIZE,
                               hps('lstm_size') + 1],
                        scale=1.,
                        partitioner=partitioner,
                        caching_device=caching_device)

                # Trimming to the maximum number of candidates
                candidate_lengths = tf.reduce_sum(
                    to_int32(tf.math.greater(candidates, PAD_ID)),
                    -1)  # int32 - (b,)
                max_candidate_length = tf.math.maximum(
                    1, tf.reduce_max(candidate_lengths))
                candidates = candidates[:, :, :max_candidate_length]

        # Building output tags
        outputs = {
            'batch_size':
            batch_size,
            'board_alignments':
            board_alignments,
            'decoder_inputs':
            decoder_inputs,
            'decoder_type':
            decoder_type,
            'raw_decoder_lengths':
            raw_decoder_lengths,
            'decoder_lengths':
            decoder_lengths,
            'board_state_conv':
            board_state_conv,
            'board_state_0yr_conv':
            board_state_0yr_conv,
            'prev_ord_conv':
            prev_ord_conv,
            'order_embedding':
            order_embedding,
            'candidate_embedding':
            candidate_embedding,
            'candidates':
            candidates,
            'max_candidate_length':
            max_candidate_length,
            'in_retreat_phase':
            tf.math.logical_and(  # 1) board not empty, 2) disl. units present
                tf.reduce_sum(board_state[:], axis=[1, 2]) > 0,
                tf.math.logical_not(
                    to_bool(tf.reduce_min(board_state[:, :, 23], -1))))
        }

        # Adding to graph
        self.add_meta_information(outputs)
Ejemplo n.º 6
0
    def _get_board_value(self,
                         board_state,
                         current_power,
                         name='board_state_value',
                         reuse=None):
        """ Computes the estimated value of a board state
            :param board_state: The board state - (batch, NB_NODES, NB_FEATURES)
            :param current_power: The power for which we want the board value - (batch,)
            :param name: The name to use for the operaton
            :param reuse: Whether to reuse or not the weights from another operation
            :return: The value of the board state for the specified power - (batch,)
        """
        from diplomacy_research.utils.tensorflow import tf
        from diplomacy_research.models.layers.graph_convolution import GraphConvolution, preprocess_adjacency

        # Quick function to retrieve hparams and placeholders and function shorthands
        hps = lambda hparam_name: self.hparams[hparam_name]
        relu = tf.nn.relu

        # Computing norm adjacency
        norm_adjacency = preprocess_adjacency(get_adjacency_matrix())
        norm_adjacency = tf.tile(tf.expand_dims(norm_adjacency, axis=0),
                                 [tf.shape(board_state)[0], 1, 1])

        # Building scope
        # No need to use 'stop_gradient_value' - Because this model does not share parameters.
        scope = tf.VariableScope(name='value/%s' % name, reuse=reuse)
        with tf.variable_scope(scope):

            with tf.variable_scope('graph_conv_scope'):
                graph_conv = board_state  # (b, NB_NODES, NB_FEAT)
                graph_conv = GraphConvolution(
                    input_dim=graph_conv.shape[-1].
                    value,  # (b, NB_NODES, gcn_1)
                    output_dim=hps('value_gcn_1_output_size'),
                    norm_adjacency=norm_adjacency,
                    activation_fn=relu,
                    bias=True)(graph_conv)
                flat_graph_conv = tf.reshape(
                    graph_conv,
                    shape=[-1, NB_NODES * hps('value_gcn_1_output_size')])
                flat_graph_conv = tf.layers.Dense(
                    units=hps('value_embedding_size'),
                    activation=relu,
                    use_bias=True)(flat_graph_conv)  # (b, value_emb_size)

            with tf.variable_scope('value_scope'):
                current_power_mask = tf.one_hot(current_power,
                                                NB_POWERS,
                                                dtype=tf.float32)
                state_value = flat_graph_conv  # (b, value_emb_size)
                state_value = tf.layers.Dense(
                    units=hps('value_h1_size'),  # (b, value_h1_size)
                    activation=relu,
                    use_bias=True)(state_value)
                state_value = tf.layers.Dense(
                    units=hps('value_h2_size'),  # (b, value_h2_size)
                    activation=relu,
                    use_bias=True)(state_value)
                state_value = tf.layers.Dense(
                    units=NB_POWERS,  # (b, NB_POWERS)
                    activation=None,
                    use_bias=True)(state_value)
                state_value = tf.reduce_sum(state_value * current_power_mask,
                                            axis=1)  # (b,)

        # Returning
        return state_value