Ejemplo n.º 1
0
def test_mi_gradient_sparse():
    # Test the gradient of mutual information
    h = 1e-5
    for ttype in factors:
        transform = regtransforms[ttype]
        dim = ttype[1]
        if dim == 2:
            nslices = 1
            interp_method = vf.interpolate_scalar_2d
        else:
            nslices = 45
            interp_method = vf.interpolate_scalar_3d
        # Get data (pair of images related to each other by an known transform)
        factor = factors[ttype]
        static, moving, static_g2w, moving_g2w, smask, mmask, M = \
            setup_random_transform(transform, factor, nslices, 5.0)
        smask = None
        mmask = None

        # Sample static domain
        k = 3
        sigma = 0.25
        seed = 1234
        shape = np.array(static.shape, dtype=np.int32)
        samples = sample_domain_regular(k, shape, static_g2w, sigma, seed)
        samples = np.array(samples)
        samples = np.hstack((samples, np.ones(samples.shape[0])[:, None]))
        sp_to_static = np.linalg.inv(static_g2w)
        samples_static_grid = (sp_to_static.dot(samples.T).T)[..., :dim]
        intensities_static, inside = interp_method(static.astype(np.float32),
                                                   samples_static_grid)
        intensities_static = np.array(intensities_static, dtype=np.float64)

        # Prepare a MattesBase instance
        # The computation of the metric is done in 3 steps:
        # 1.Compute the joint distribution
        # 2.Compute the gradient of the joint distribution
        # 3.Compute the metric's value and gradient using results from 1 and 2
        metric = MattesBase(32)
        metric.setup(static, moving, smask, mmask)

        # 1. Update the joint distribution
        sp_to_moving = np.linalg.inv(moving_g2w)
        samples_moving_grid = (sp_to_moving.dot(samples.T).T)[..., :dim]
        intensities_moving, inside = interp_method(moving.astype(np.float32),
                                                   samples_moving_grid)
        intensities_moving = np.array(intensities_moving, dtype=np.float64)
        metric.update_pdfs_sparse(intensities_static, intensities_moving)

        # 2. Update the joint distribution gradient (the derivative of each
        # histogram cell w.r.t. the transform parameters). This requires
        # to evaluate the gradient of the moving image at the sampling points
        theta = transform.get_identity_parameters().copy()
        spacing = np.ones(dim, dtype=np.float64)
        shape = np.array(static.shape, dtype=np.int32)
        mgrad, inside = vf.sparse_gradient(moving.astype(np.float32),
                                           sp_to_moving,
                                           spacing,
                                           samples[..., :dim])
        metric.update_gradient_sparse(theta, transform, intensities_static,
                                      intensities_moving,
                                      samples[..., :dim],
                                      mgrad)

        # 3. Update the metric (in this case, the Mutual Information) and its
        # gradient, which is computed from the joint density and its gradient
        metric.update_mi_metric(update_gradient=True)

        # Now we can extract the value and gradient of the metric
        # This is the gradient according to the implementation under test
        val0 = metric.metric_val
        actual = np.copy(metric.metric_grad)

        # Compute the gradient using finite-diferences
        n = transform.get_number_of_parameters()
        expected = np.empty_like(actual)
        for i in range(n):
            dtheta = theta.copy()
            dtheta[i] += h

            M = transform.param_to_matrix(dtheta)
            shape = np.array(static.shape, dtype=np.int32)
            sp_to_moving = np.linalg.inv(moving_g2w).dot(M)
            samples_moving_grid = (sp_to_moving.dot(samples.T).T)[..., :dim]
            intensities_moving, inside =\
                interp_method(moving.astype(np.float32), samples_moving_grid)
            intensities_moving = np.array(intensities_moving, dtype=np.float64)
            metric.update_pdfs_sparse(intensities_static, intensities_moving)
            metric.update_mi_metric(update_gradient=False)
            val1 = metric.metric_val
            expected[i] = (val1 - val0) / h

        dp = expected.dot(actual)
        enorm = np.linalg.norm(expected)
        anorm = np.linalg.norm(actual)
        nprod = dp / (enorm * anorm)
        assert(nprod > 0.9999)
Ejemplo n.º 2
0
def test_mi_gradient_sparse():
    # Test the gradient of mutual information
    h = 1e-5
    for ttype in factors:
        transform = regtransforms[ttype]
        dim = ttype[1]
        if dim == 2:
            nslices = 1
            interp_method = vf.interpolate_scalar_2d
        else:
            nslices = 45
            interp_method = vf.interpolate_scalar_3d
        # Get data (pair of images related to each other by an known transform)
        factor = factors[ttype]
        static, moving, static_g2w, moving_g2w, smask, mmask, M = \
            setup_random_transform(transform, factor, nslices, 5.0)
        smask = None
        mmask = None

        # Sample static domain
        k = 3
        sigma = 0.25
        seed = 1234
        shape = np.array(static.shape, dtype=np.int32)
        samples = sample_domain_regular(k, shape, static_g2w, sigma, seed)
        samples = np.array(samples)
        samples = np.hstack((samples, np.ones(samples.shape[0])[:, None]))
        sp_to_static = np.linalg.inv(static_g2w)
        samples_static_grid = (sp_to_static.dot(samples.T).T)[..., :dim]
        intensities_static, inside = interp_method(static.astype(np.float32),
                                                   samples_static_grid)
        intensities_static = np.array(intensities_static, dtype=np.float64)

        # Prepare a MattesBase instance
        # The computation of the metric is done in 3 steps:
        # 1.Compute the joint distribution
        # 2.Compute the gradient of the joint distribution
        # 3.Compute the metric's value and gradient using results from 1 and 2
        metric = MattesBase(32)
        metric.setup(static, moving, smask, mmask)

        # 1. Update the joint distribution
        sp_to_moving = np.linalg.inv(moving_g2w)
        samples_moving_grid = (sp_to_moving.dot(samples.T).T)[..., :dim]
        intensities_moving, inside = interp_method(moving.astype(np.float32),
                                                   samples_moving_grid)
        intensities_moving = np.array(intensities_moving, dtype=np.float64)
        metric.update_pdfs_sparse(intensities_static, intensities_moving)

        # 2. Update the joint distribution gradient (the derivative of each
        # histogram cell w.r.t. the transform parameters). This requires
        # to evaluate the gradient of the moving image at the sampling points
        theta = transform.get_identity_parameters().copy()
        spacing = np.ones(dim, dtype=np.float64)
        shape = np.array(static.shape, dtype=np.int32)
        mgrad, inside = vf.sparse_gradient(moving.astype(np.float32),
                                           sp_to_moving, spacing,
                                           samples[..., :dim])
        metric.update_gradient_sparse(theta, transform, intensities_static,
                                      intensities_moving, samples[..., :dim],
                                      mgrad)

        # 3. Update the metric (in this case, the Mutual Information) and its
        # gradient, which is computed from the joint density and its gradient
        metric.update_mi_metric(update_gradient=True)

        # Now we can extract the value and gradient of the metric
        # This is the gradient according to the implementation under test
        val0 = metric.metric_val
        actual = np.copy(metric.metric_grad)

        # Compute the gradient using finite-diferences
        n = transform.get_number_of_parameters()
        expected = np.empty_like(actual)
        for i in range(n):
            dtheta = theta.copy()
            dtheta[i] += h

            M = transform.param_to_matrix(dtheta)
            shape = np.array(static.shape, dtype=np.int32)
            sp_to_moving = np.linalg.inv(moving_g2w).dot(M)
            samples_moving_grid = (sp_to_moving.dot(samples.T).T)[..., :dim]
            intensities_moving, inside =\
                interp_method(moving.astype(np.float32), samples_moving_grid)
            intensities_moving = np.array(intensities_moving, dtype=np.float64)
            metric.update_pdfs_sparse(intensities_static, intensities_moving)
            metric.update_mi_metric(update_gradient=False)
            val1 = metric.metric_val
            expected[i] = (val1 - val0) / h

        dp = expected.dot(actual)
        enorm = np.linalg.norm(expected)
        anorm = np.linalg.norm(actual)
        nprod = dp / (enorm * anorm)
        assert (nprod > 0.9999)
Ejemplo n.º 3
0
def test_mi_gradient_dense():
    # Test the gradient of mutual information
    h = 1e-5
    for ttype in factors:
        transform = regtransforms[ttype]
        dim = ttype[1]
        if dim == 2:
            nslices = 1
            warp_method = vf.warp_2d_affine
        else:
            nslices = 45
            warp_method = vf.warp_3d_affine
        # Get data (pair of images related to each other by an known transform)
        factor = factors[ttype]
        static, moving, static_g2w, moving_g2w, smask, mmask, M = \
            setup_random_transform(transform, factor, nslices, 5.0)
        smask = None
        mmask = None

        # Prepare a MattesBase instance
        # The computation of the metric is done in 3 steps:
        # 1.Compute the joint distribution
        # 2.Compute the gradient of the joint distribution
        # 3.Compute the metric's value and gradient using results from 1 and 2
        metric = MattesBase(32)
        metric.setup(static, moving, smask, mmask)

        # 1. Update the joint distribution
        metric.update_pdfs_dense(static.astype(np.float64),
                                 moving.astype(np.float64))

        # 2. Update the joint distribution gradient (the derivative of each
        # histogram cell w.r.t. the transform parameters). This requires
        # among other things, the spatial gradient of the moving image.
        theta = transform.get_identity_parameters().copy()
        grid_to_space = np.eye(dim + 1)
        spacing = np.ones(dim, dtype=np.float64)
        shape = np.array(static.shape, dtype=np.int32)
        mgrad, inside = vf.gradient(moving.astype(np.float32), moving_g2w,
                                    spacing, shape, grid_to_space)
        metric.update_gradient_dense(theta, transform,
                                     static.astype(np.float64),
                                     moving.astype(np.float64),
                                     grid_to_space, mgrad, smask, mmask)

        # 3. Update the metric (in this case, the Mutual Information) and its
        # gradient, which is computed from the joint density and its gradient
        metric.update_mi_metric(update_gradient=True)

        # Now we can extract the value and gradient of the metric
        # This is the gradient according to the implementation under test
        val0 = metric.metric_val
        actual = np.copy(metric.metric_grad)

        # Compute the gradient using finite-diferences
        n = transform.get_number_of_parameters()
        expected = np.empty_like(actual)
        for i in range(n):
            dtheta = theta.copy()
            dtheta[i] += h

            M = transform.param_to_matrix(dtheta)
            shape = np.array(static.shape, dtype=np.int32)
            warped = np.array(warp_method(moving.astype(np.float32), shape, M))
            metric.update_pdfs_dense(static.astype(np.float64),
                                     warped.astype(np.float64))
            metric.update_mi_metric(update_gradient=False)
            val1 = metric.metric_val
            expected[i] = (val1 - val0) / h

        dp = expected.dot(actual)
        enorm = np.linalg.norm(expected)
        anorm = np.linalg.norm(actual)
        nprod = dp / (enorm * anorm)
        assert(nprod >= 0.999)
Ejemplo n.º 4
0
def test_mi_gradient_dense():
    # Test the gradient of mutual information
    h = 1e-5
    for ttype in factors:
        transform = regtransforms[ttype]
        dim = ttype[1]
        if dim == 2:
            nslices = 1
            warp_method = vf.warp_2d_affine
        else:
            nslices = 45
            warp_method = vf.warp_3d_affine
        # Get data (pair of images related to each other by an known transform)
        factor = factors[ttype]
        static, moving, static_g2w, moving_g2w, smask, mmask, M = \
            setup_random_transform(transform, factor, nslices, 5.0)
        smask = None
        mmask = None

        # Prepare a MattesBase instance
        # The computation of the metric is done in 3 steps:
        # 1.Compute the joint distribution
        # 2.Compute the gradient of the joint distribution
        # 3.Compute the metric's value and gradient using results from 1 and 2
        metric = MattesBase(32)
        metric.setup(static, moving, smask, mmask)

        # 1. Update the joint distribution
        metric.update_pdfs_dense(static.astype(np.float64),
                                 moving.astype(np.float64))

        # 2. Update the joint distribution gradient (the derivative of each
        # histogram cell w.r.t. the transform parameters). This requires
        # among other things, the spatial gradient of the moving image.
        theta = transform.get_identity_parameters().copy()
        grid_to_space = np.eye(dim + 1)
        spacing = np.ones(dim, dtype=np.float64)
        shape = np.array(static.shape, dtype=np.int32)
        mgrad, inside = vf.gradient(moving.astype(np.float32), moving_g2w,
                                    spacing, shape, grid_to_space)
        metric.update_gradient_dense(theta, transform,
                                     static.astype(np.float64),
                                     moving.astype(np.float64), grid_to_space,
                                     mgrad, smask, mmask)

        # 3. Update the metric (in this case, the Mutual Information) and its
        # gradient, which is computed from the joint density and its gradient
        metric.update_mi_metric(update_gradient=True)

        # Now we can extract the value and gradient of the metric
        # This is the gradient according to the implementation under test
        val0 = metric.metric_val
        actual = np.copy(metric.metric_grad)

        # Compute the gradient using finite-diferences
        n = transform.get_number_of_parameters()
        expected = np.empty_like(actual)
        for i in range(n):
            dtheta = theta.copy()
            dtheta[i] += h

            M = transform.param_to_matrix(dtheta)
            shape = np.array(static.shape, dtype=np.int32)
            warped = np.array(warp_method(moving.astype(np.float32), shape, M))
            metric.update_pdfs_dense(static.astype(np.float64),
                                     warped.astype(np.float64))
            metric.update_mi_metric(update_gradient=False)
            val1 = metric.metric_val
            expected[i] = (val1 - val0) / h

        dp = expected.dot(actual)
        enorm = np.linalg.norm(expected)
        anorm = np.linalg.norm(actual)
        nprod = dp / (enorm * anorm)
        assert (nprod >= 0.999)