Ejemplo n.º 1
0
def load_dwi_files_blinds(folder_name):
    from dipy.core.gradients import gradient_table
    from dipy.core.geometry import compose_matrix, decompose_matrix

    for file in os.listdir(folder_name):
        if file.endswith(".bvec"):
            bvec_file = os.path.join(folder_name, file)
        if file.endswith("labels.nii"):
            labels_file_name = os.path.join(folder_name, file)
        if file.endswith("WM.nii"):
            wm_file_name = os.path.join(folder_name, file)
    bval_file = bvec_file[:-4:]+'bval'
    nii_file = bvec_file[:-4:]+'nii'
    hardi_img = nib.load(nii_file)
    data = hardi_img.get_fdata()
    affine = hardi_img.affine
    scale, shear, ang, trans, pre = decompose_matrix(affine)
    shear = np.zeros(np.shape(shear))
    affine = compose_matrix(scale, shear, ang, trans, pre)
    gtab = gradient_table(bval_file, bvec_file)
    #voxel_size = nib.affines.voxel_sizes(affine)
    #data, affine1 = reslice(data, affine, voxel_size, (3., 3., 3.))

    labels_img = nib.load(labels_file_name)
    labels = labels_img.get_fdata()
    #labels,affine1=reslice(labels,affine,voxel_size,(3., 3., 3.))

    wm_img = nib.load(wm_file_name)
    white_matter = wm_img.get_fdata()
    #white_matter,affine1=reslice(white_matter,affine,voxel_size,(3., 3., 3.))

    return gtab,data,affine,labels,white_matter,nii_file,bvec_file
Ejemplo n.º 2
0
def test_compose_decompose_matrix():

    for translate in permutations(40 * np.random.rand(3), 3):
        for angles in permutations(np.deg2rad(90 * np.random.rand(3)), 3):
            for shears in permutations(3 * np.random.rand(3), 3):
                for scale in permutations(3 * np.random.rand(3), 3):

                    mat = compose_matrix(translate=translate, angles=angles,
                                         shear=shears, scale=scale)
                    sc, sh, ang, trans, _ = decompose_matrix(mat)

                    assert_array_almost_equal(translate, trans)
                    assert_array_almost_equal(angles, ang)

                    assert_array_almost_equal(shears, sh)
                    assert_array_almost_equal(scale, sc)
Ejemplo n.º 3
0
def compose_matrix44(t, dtype=np.double):
    """ Compose a 4x4 transformation matrix

    Parameters
    -----------
    t : ndarray
        This is a 1D vector of affine transformation parameters with
        size at least 3.
        If the size is 3, t is interpreted as translation.
        If the size is 6, t is interpreted as translation + rotation.
        If the size is 7, t is interpreted as translation + rotation +
        isotropic scaling.
        If the size is 9, t is interpreted as translation + rotation +
        anisotropic scaling.
        If size is 12, t is interpreted as translation + rotation +
        scaling + shearing.

    Returns
    -------
    T : ndarray
        Homogeneous transformation matrix of size 4x4.

    """
    if isinstance(t, list):
        t = np.array(t)
    size = t.size

    if size not in [3, 6, 7, 9, 12]:
        raise ValueError('Accepted number of parameters is 3, 6, 7, 9 and 12')

    MAX_DIST = 1e10
    scale, shear, angles, translate = (None, ) * 4
    translate = _threshold(t[0:3], MAX_DIST)
    if size in [6, 7, 9, 12]:
        angles = np.deg2rad(t[3:6])
    if size == 7:
        scale = np.array((t[6], ) * 3)
    if size in [9, 12]:
        scale = t[6:9]
    if size == 12:
        shear = t[9:12]
    return compose_matrix(scale=scale,
                          shear=shear,
                          angles=angles,
                          translate=translate)
Ejemplo n.º 4
0
def test_rigid_partial_real_bundles():

    static = fornix_streamlines()[:20]
    moving = fornix_streamlines()[20:40]
    static_center, shift = center_streamlines(static)
    moving_center, shift2 = center_streamlines(moving)

    print(shift2)
    mat = compose_matrix(translate=np.array([0, 0, 0.]),
                         angles=np.deg2rad([40, 0, 0.]))
    moved = transform_streamlines(moving_center, mat)

    srr = StreamlineLinearRegistration()

    srm = srr.optimize(static_center, moved)
    print(srm.fopt)
    print(srm.iterations)
    print(srm.funcs)

    moving_back = srm.transform(moved)
    print(srm.matrix)

    static_center = set_number_of_points(static_center, 100)
    moving_center = set_number_of_points(moving_back, 100)

    vol = np.zeros((100, 100, 100))
    spts = np.concatenate(static_center, axis=0)
    spts = np.round(spts).astype(np.int) + np.array([50, 50, 50])

    mpts = np.concatenate(moving_center, axis=0)
    mpts = np.round(mpts).astype(np.int) + np.array([50, 50, 50])

    for index in spts:
        i, j, k = index
        vol[i, j, k] = 1

    vol2 = np.zeros((100, 100, 100))
    for index in mpts:
        i, j, k = index
        vol2[i, j, k] = 1

    overlap = np.sum(np.logical_and(vol, vol2)) / float(np.sum(vol2))

    assert_equal(overlap * 100 > 40, True)
Ejemplo n.º 5
0
def test_rigid_partial_real_bundles():

    static = fornix_streamlines()[:20]
    moving = fornix_streamlines()[20:40]
    static_center, shift = center_streamlines(static)
    moving_center, shift2 = center_streamlines(moving)

    print(shift2)
    mat = compose_matrix(translate=np.array([0, 0, 0.]),
                         angles=np.deg2rad([40, 0, 0.]))
    moved = transform_streamlines(moving_center, mat)

    srr = StreamlineLinearRegistration()

    srm = srr.optimize(static_center, moved)
    print(srm.fopt)
    print(srm.iterations)
    print(srm.funcs)

    moving_back = srm.transform(moved)
    print(srm.matrix)

    static_center = set_number_of_points(static_center, 100)
    moving_center = set_number_of_points(moving_back, 100)

    vol = np.zeros((100, 100, 100))
    spts = np.concatenate(static_center, axis=0)
    spts = np.round(spts).astype(np.int) + np.array([50, 50, 50])

    mpts = np.concatenate(moving_center, axis=0)
    mpts = np.round(mpts).astype(np.int) + np.array([50, 50, 50])

    for index in spts:
        i, j, k = index
        vol[i, j, k] = 1

    vol2 = np.zeros((100, 100, 100))
    for index in mpts:
        i, j, k = index
        vol2[i, j, k] = 1

    overlap = np.sum(np.logical_and(vol, vol2)) / float(np.sum(vol2))

    assert_equal(overlap * 100 > 40, True)
Ejemplo n.º 6
0
def compose_matrix44(t, dtype=np.double):
    """ Compose a 4x4 transformation matrix

    Parameters
    -----------
    t : ndarray
        This is a 1D vector of of affine transformation parameters with
        size at least 3.
        If size is 3, t is interpreted as translation.
        If size is 6, t is interpreted as translation + rotation.
        If size is 7, t is interpreted as translation + rotation +
        isotropic scaling.
        If size is 9, t is interpreted as translation + rotation +
        anisotropic scaling.
        If size is 12, t is interpreted as translation + rotation +
        scaling + shearing.

    Returns
    -------
    T : ndarray
        Homogeneous transformation matrix of size 4x4.

    """
    if isinstance(t, list):
        t = np.array(t)
    size = t.size

    if size not in [3, 6, 7, 9, 12]:
        raise ValueError('Accepted number of parameters is 3, 6, 7, 9 and 12')

    MAX_DIST = 1e10
    scale, shear, angles, translate = (None, ) * 4
    translate = _threshold(t[0:3], MAX_DIST)
    if size in [6, 7, 9, 12]:
        angles = np.deg2rad(t[3:6])
    if size == 7:
        scale = np.array((t[6],) * 3)
    if size in [9, 12]:
        scale = t[6: 9]
    if size == 12:
        shear = t[9: 12]
    return compose_matrix(scale=scale, shear=shear,
                          angles=angles,
                          translate=translate)