Ejemplo n.º 1
0
def test_shore_metrics():
    fetch_taiwan_ntu_dsi()
    img, gtab = read_taiwan_ntu_dsi()

    mevals = np.array(([0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]))
    angl = [(0, 0), (60, 0)]
    S, sticks = MultiTensor(gtab, mevals, S0=100, angles=angl,
                            fractions=[50, 50], snr=None)
    S = S / S[0, None].astype(np.float)

    radial_order = 8
    zeta = 800
    lambdaN = 1e-12
    lambdaL = 1e-12
    asm = ShoreModel(gtab, radial_order=radial_order, zeta=zeta, lambdaN=lambdaN, lambdaL=lambdaL)
    asmfit = asm.fit(S)
    c_shore= asmfit.shore_coeff

    cmat = SHOREmatrix(radial_order, zeta, gtab)
    S_reconst = np.dot(cmat, c_shore)
    nmse_signal = np.sqrt(np.sum((S - S_reconst) ** 2)) / (S.sum())
    assert_almost_equal(nmse_signal, 0.0, 4)

    mevecs2 = np.zeros((2, 3, 3))
    angl = np.array(angl)
    for i in range(2):
        mevecs2[i] = all_tensor_evecs(sticks[i]).T

    sphere = get_sphere('symmetric724')
    v = sphere.vertices
    radius = 10e-3
    pdf_shore = asmfit.pdf(v * radius)
    pdf_mt = multi_tensor_pdf(v * radius, [.5, .5], mevals=mevals, mevecs=mevecs2)
    nmse_pdf = np.sqrt(np.sum((pdf_mt - pdf_shore) ** 2)) / (pdf_mt.sum())
    assert_almost_equal(nmse_pdf, 0.0, 2)

    rtop_shore_signal = asmfit.rtop_signal()
    rtop_shore_pdf = asmfit.rtop_pdf()
    assert_almost_equal(rtop_shore_signal, rtop_shore_pdf, 9)
    rtop_mt = multi_tensor_rtop([.5, .5], mevals=mevals)
    assert_equal(rtop_mt/rtop_shore_signal < 1.12 and rtop_mt/rtop_shore_signal > 0.9 , True)
    
    msd_mt = multi_tensor_msd([.5, .5], mevals=mevals)
    msd_shore = asmfit.msd()
    assert_equal(msd_mt/msd_shore < 1.05 and msd_mt/msd_shore > 0.95 , True)
Ejemplo n.º 2
0
[Wu2007]_, [Wu2008]_ on your dataset.

First import the necessary modules:
"""

import numpy as np
import matplotlib.pyplot as plt
from dipy.data import fetch_taiwan_ntu_dsi, read_taiwan_ntu_dsi
from dipy.reconst.dsi import DiffusionSpectrumModel

"""
Download and read the data for this tutorial.
"""

fetch_taiwan_ntu_dsi()
img, gtab = read_taiwan_ntu_dsi()

"""
img contains a nibabel Nifti1Image object (data) and gtab contains a GradientTable
object (gradient information e.g. b-values). For example to read the b-values
it is possible to write print(gtab.bvals).

Load the raw diffusion data and the affine.
"""

data = img.get_data()
affine = img.affine
print('data.shape (%d, %d, %d, %d)' % data.shape)

"""
Instantiate the Model and apply it to the data.
Ejemplo n.º 3
0
First import the necessary modules:
"""

import nibabel as nib
import numpy as np
import matplotlib.pyplot as plt
from dipy.data import fetch_taiwan_ntu_dsi, read_taiwan_ntu_dsi, get_sphere
from dipy.data import get_data, dsi_voxels
from dipy.reconst.shore import ShoreModel
"""
Download and read the data for this tutorial.
"""

fetch_taiwan_ntu_dsi()
img, gtab = read_taiwan_ntu_dsi()
"""
img contains a nibabel Nifti1Image object (data) and gtab contains a GradientTable
object (gradient information e.g. b-values). For example, to read the b-values
it is possible to write print(gtab.bvals).

Load the raw diffusion data and the affine.
"""

data = img.get_data()
affine = img.affine
print('data.shape (%d, %d, %d, %d)' % data.shape)
"""
Instantiate the Model.
"""