Ejemplo n.º 1
0
def main():
    parser = _build_args_parser()
    args = parser.parse_args()

    if not args.not_all:
        args.fa = args.fa or 'fa.nii.gz'
        args.ga = args.ga or 'ga.nii.gz'
        args.rgb = args.rgb or 'rgb.nii.gz'
        args.md = args.md or 'md.nii.gz'
        args.ad = args.ad or 'ad.nii.gz'
        args.rd = args.rd or 'rd.nii.gz'
        args.mode = args.mode or 'mode.nii.gz'
        args.norm = args.norm or 'tensor_norm.nii.gz'
        args.tensor = args.tensor or 'tensor.nii.gz'
        args.evecs = args.evecs or 'tensor_evecs.nii.gz'
        args.evals = args.evals or 'tensor_evals.nii.gz'
        args.residual = args.residual or 'dti_residual.nii.gz'
        args.p_i_signal =\
            args.p_i_signal or 'physically_implausible_signals_mask.nii.gz'
        args.pulsation = args.pulsation or 'pulsation_and_misalignment.nii.gz'

    outputs = [args.fa, args.ga, args.rgb, args.md, args.ad, args.rd,
               args.mode, args.norm, args.tensor, args.evecs, args.evals,
               args.residual, args.p_i_signal, args.pulsation]
    if args.not_all and not any(outputs):
        parser.error('When using --not_all, you need to specify at least ' +
                     'one metric to output.')

    assert_inputs_exist(
        parser, [args.input, args.bvals, args.bvecs], args.mask)
    assert_outputs_exist(parser, args, outputs)

    img = nib.load(args.input)
    data = img.get_data()
    affine = img.get_affine()
    if args.mask is None:
        mask = None
    else:
        mask = nib.load(args.mask).get_data().astype(np.bool)

    # Validate bvals and bvecs
    logging.info('Tensor estimation with the %s method...', args.method)
    bvals, bvecs = read_bvals_bvecs(args.bvals, args.bvecs)

    if not is_normalized_bvecs(bvecs):
        logging.warning('Your b-vectors do not seem normalized...')
        bvecs = normalize_bvecs(bvecs)

    check_b0_threshold(args, bvals.min())
    gtab = gradient_table(bvals, bvecs, b0_threshold=bvals.min())

    # Get tensors
    if args.method == 'restore':
        sigma = ne.estimate_sigma(data)
        tenmodel = TensorModel(gtab, fit_method=args.method, sigma=sigma,
                               min_signal=_get_min_nonzero_signal(data))
    else:
        tenmodel = TensorModel(gtab, fit_method=args.method,
                               min_signal=_get_min_nonzero_signal(data))

    tenfit = tenmodel.fit(data, mask)

    FA = fractional_anisotropy(tenfit.evals)
    FA[np.isnan(FA)] = 0
    FA = np.clip(FA, 0, 1)

    if args.tensor:
        # Get the Tensor values and format them for visualisation
        # in the Fibernavigator.
        tensor_vals = lower_triangular(tenfit.quadratic_form)
        correct_order = [0, 1, 3, 2, 4, 5]
        tensor_vals_reordered = tensor_vals[..., correct_order]
        fiber_tensors = nib.Nifti1Image(
            tensor_vals_reordered.astype(np.float32), affine)
        nib.save(fiber_tensors, args.tensor)

    if args.fa:
        fa_img = nib.Nifti1Image(FA.astype(np.float32), affine)
        nib.save(fa_img, args.fa)

    if args.ga:
        GA = geodesic_anisotropy(tenfit.evals)
        GA[np.isnan(GA)] = 0

        ga_img = nib.Nifti1Image(GA.astype(np.float32), affine)
        nib.save(ga_img, args.ga)

    if args.rgb:
        RGB = color_fa(FA, tenfit.evecs)
        rgb_img = nib.Nifti1Image(np.array(255 * RGB, 'uint8'), affine)
        nib.save(rgb_img, args.rgb)

    if args.md:
        MD = mean_diffusivity(tenfit.evals)
        md_img = nib.Nifti1Image(MD.astype(np.float32), affine)
        nib.save(md_img, args.md)

    if args.ad:
        AD = axial_diffusivity(tenfit.evals)
        ad_img = nib.Nifti1Image(AD.astype(np.float32), affine)
        nib.save(ad_img, args.ad)

    if args.rd:
        RD = radial_diffusivity(tenfit.evals)
        rd_img = nib.Nifti1Image(RD.astype(np.float32), affine)
        nib.save(rd_img, args.rd)

    if args.mode:
        # Compute tensor mode
        inter_mode = dipy_mode(tenfit.quadratic_form)

        # Since the mode computation can generate NANs when not masked,
        # we need to remove them.
        non_nan_indices = np.isfinite(inter_mode)
        mode = np.zeros(inter_mode.shape)
        mode[non_nan_indices] = inter_mode[non_nan_indices]

        mode_img = nib.Nifti1Image(mode.astype(np.float32), affine)
        nib.save(mode_img, args.mode)

    if args.norm:
        NORM = norm(tenfit.quadratic_form)
        norm_img = nib.Nifti1Image(NORM.astype(np.float32), affine)
        nib.save(norm_img, args.norm)

    if args.evecs:
        evecs = tenfit.evecs.astype(np.float32)
        evecs_img = nib.Nifti1Image(evecs, affine)
        nib.save(evecs_img, args.evecs)

        # save individual e-vectors also
        e1_img = nib.Nifti1Image(evecs[..., 0], affine)
        e2_img = nib.Nifti1Image(evecs[..., 1], affine)
        e3_img = nib.Nifti1Image(evecs[..., 2], affine)

        nib.save(e1_img, add_filename_suffix(args.evecs, '_v1'))
        nib.save(e2_img, add_filename_suffix(args.evecs, '_v2'))
        nib.save(e3_img, add_filename_suffix(args.evecs, '_v3'))

    if args.evals:
        evals = tenfit.evals.astype(np.float32)
        evals_img = nib.Nifti1Image(evals, affine)
        nib.save(evals_img, args.evals)

        # save individual e-values also
        e1_img = nib.Nifti1Image(evals[..., 0], affine)
        e2_img = nib.Nifti1Image(evals[..., 1], affine)
        e3_img = nib.Nifti1Image(evals[..., 2], affine)

        nib.save(e1_img, add_filename_suffix(args.evals, '_e1'))
        nib.save(e2_img, add_filename_suffix(args.evals, '_e2'))
        nib.save(e3_img, add_filename_suffix(args.evals, '_e3'))

    if args.p_i_signal:
        S0 = np.mean(data[..., gtab.b0s_mask], axis=-1, keepdims=True)
        DWI = data[..., ~gtab.b0s_mask]
        pis_mask = np.max(S0 < DWI, axis=-1)

        if args.mask is not None:
            pis_mask *= mask

        pis_img = nib.Nifti1Image(pis_mask.astype(np.int16), affine)
        nib.save(pis_img, args.p_i_signal)

    if args.pulsation:
        STD = np.std(data[..., ~gtab.b0s_mask], axis=-1)

        if args.mask is not None:
            STD *= mask

        std_img = nib.Nifti1Image(STD.astype(np.float32), affine)
        nib.save(std_img, add_filename_suffix(args.pulsation, '_std_dwi'))

        if np.sum(gtab.b0s_mask) <= 1:
            logger.info('Not enough b=0 images to output standard '
                        'deviation map')
        else:
            if len(np.where(gtab.b0s_mask)) == 2:
                logger.info('Only two b=0 images. Be careful with the '
                            'interpretation of this std map')

            STD = np.std(data[..., gtab.b0s_mask], axis=-1)

            if args.mask is not None:
                STD *= mask

            std_img = nib.Nifti1Image(STD.astype(np.float32), affine)
            nib.save(std_img, add_filename_suffix(args.pulsation, '_std_b0'))

    if args.residual:
        # Mean residual image
        S0 = np.mean(data[..., gtab.b0s_mask], axis=-1)
        data_p = tenfit.predict(gtab, S0)
        R = np.mean(np.abs(data_p[..., ~gtab.b0s_mask] -
                           data[..., ~gtab.b0s_mask]), axis=-1)

        if args.mask is not None:
            R *= mask

        R_img = nib.Nifti1Image(R.astype(np.float32), affine)
        nib.save(R_img, args.residual)

        # Each volume's residual statistics
        if args.mask is None:
            logger.info("Outlier detection will not be performed, since no "
                        "mask was provided.")
        stats = [dict.fromkeys(['label', 'mean', 'iqr', 'cilo', 'cihi', 'whishi',
                                'whislo', 'fliers', 'q1', 'med', 'q3'], [])
                 for i in range(data.shape[-1])]  # stats with format for boxplots
        # Note that stats will be computed manually and plotted using bxp
        # but could be computed using stats = cbook.boxplot_stats
        # or pyplot.boxplot(x)
        R_k = np.zeros(data.shape[-1])    # mean residual per DWI
        std = np.zeros(data.shape[-1])  # std residual per DWI
        q1 = np.zeros(data.shape[-1])   # first quartile per DWI
        q3 = np.zeros(data.shape[-1])   # third quartile per DWI
        iqr = np.zeros(data.shape[-1])  # interquartile per DWI
        percent_outliers = np.zeros(data.shape[-1])
        nb_voxels = np.count_nonzero(mask)
        for k in range(data.shape[-1]):
            x = np.abs(data_p[..., k] - data[..., k])[mask]
            R_k[k] = np.mean(x)
            std[k] = np.std(x)
            q3[k], q1[k] = np.percentile(x, [75, 25])
            iqr[k] = q3[k] - q1[k]
            stats[k]['med'] = (q1[k] + q3[k]) / 2
            stats[k]['mean'] = R_k[k]
            stats[k]['q1'] = q1[k]
            stats[k]['q3'] = q3[k]
            stats[k]['whislo'] = q1[k] - 1.5 * iqr[k]
            stats[k]['whishi'] = q3[k] + 1.5 * iqr[k]
            stats[k]['label'] = k

            # Outliers are observations that fall below Q1 - 1.5(IQR) or
            # above Q3 + 1.5(IQR) We check if a voxel is an outlier only if
            # we have a mask, else we are biased.
            if args.mask is not None:
                outliers = (x < stats[k]['whislo']) | (x > stats[k]['whishi'])
                percent_outliers[k] = np.sum(outliers)/nb_voxels*100
                # What would be our definition of too many outliers?
                # Maybe mean(all_means)+-3SD?
                # Or we let people choose based on the figure.
                # if percent_outliers[k] > ???? :
                #    logger.warning('   Careful! Diffusion-Weighted Image'
                #                   ' i=%s has %s %% outlier voxels',
                #                   k, percent_outliers[k])

        # Saving all statistics as npy values
        residual_basename, _ = split_name_with_nii(args.residual)
        res_stats_basename = residual_basename + ".npy"
        np.save(add_filename_suffix(
            res_stats_basename, "_mean_residuals"), R_k)
        np.save(add_filename_suffix(res_stats_basename, "_q1_residuals"), q1)
        np.save(add_filename_suffix(res_stats_basename, "_q3_residuals"), q3)
        np.save(add_filename_suffix(res_stats_basename, "_iqr_residuals"), iqr)
        np.save(add_filename_suffix(res_stats_basename, "_std_residuals"), std)

        # Showing results in graph
        if args.mask is None:
            fig, axe = plt.subplots(nrows=1, ncols=1, squeeze=False)
        else:
            fig, axe = plt.subplots(nrows=1, ncols=2, squeeze=False,
                                    figsize=[10, 4.8])
            # Default is [6.4, 4.8]. Increasing width to see better.

        medianprops = dict(linestyle='-', linewidth=2.5, color='firebrick')
        meanprops = dict(linestyle='-', linewidth=2.5, color='green')
        axe[0, 0].bxp(stats, showmeans=True, meanline=True, showfliers=False,
                      medianprops=medianprops, meanprops=meanprops)
        axe[0, 0].set_xlabel('DW image')
        axe[0, 0].set_ylabel('Residuals per DWI volume. Red is median,\n'
                             'green is mean. Whiskers are 1.5*interquartile')
        axe[0, 0].set_title('Residuals')
        axe[0, 0].set_xticks(range(0, q1.shape[0], 5))
        axe[0, 0].set_xticklabels(range(0, q1.shape[0], 5))

        if args.mask is not None:
            axe[0, 1].plot(range(data.shape[-1]), percent_outliers)
            axe[0, 1].set_xticks(range(0, q1.shape[0], 5))
            axe[0, 1].set_xticklabels(range(0, q1.shape[0], 5))
            axe[0, 1].set_xlabel('DW image')
            axe[0, 1].set_ylabel('Percentage of outlier voxels')
            axe[0, 1].set_title('Outliers')
        plt.savefig(residual_basename + '_residuals_stats.png')
Ejemplo n.º 2
0
def test_ga_of_zero():
    evals = np.zeros((4, 3))
    ga = geodesic_anisotropy(evals)
    assert_array_equal(ga, 0)
Ejemplo n.º 3
0
    def run(self,
            input_files,
            bvalues_files,
            bvectors_files,
            mask_files,
            b0_threshold=50,
            bvecs_tol=0.01,
            save_metrics=[],
            out_dir='',
            out_tensor='tensors.nii.gz',
            out_fa='fa.nii.gz',
            out_ga='ga.nii.gz',
            out_rgb='rgb.nii.gz',
            out_md='md.nii.gz',
            out_ad='ad.nii.gz',
            out_rd='rd.nii.gz',
            out_mode='mode.nii.gz',
            out_evec='evecs.nii.gz',
            out_eval='evals.nii.gz',
            nifti_tensor=True):
        """ Workflow for tensor reconstruction and for computing DTI metrics.
        using Weighted Least-Squares.
        Performs a tensor reconstruction on the files by 'globing'
        ``input_files`` and saves the DTI metrics in a directory specified by
        ``out_dir``.

        Parameters
        ----------
        input_files : string
            Path to the input volumes. This path may contain wildcards to
            process multiple inputs at once.
        bvalues_files : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        bvectors_files : string
            Path to the bvectors files. This path may contain wildcards to use
            multiple bvectors files at once.
        mask_files : string
            Path to the input masks. This path may contain wildcards to use
            multiple masks at once.
        b0_threshold : float, optional
            Threshold used to find b0 volumes.
        bvecs_tol : float, optional
            Threshold used to check that norm(bvec) = 1 +/- bvecs_tol
            b-vectors are unit vectors.
        save_metrics : variable string, optional
            List of metrics to save.
            Possible values: fa, ga, rgb, md, ad, rd, mode, tensor, evec, eval
        out_dir : string, optional
            Output directory. (default current directory)
        out_tensor : string, optional
            Name of the tensors volume to be saved.
            Per default, this will be saved following the nifti standard:
            with the tensor elements as Dxx, Dxy, Dyy, Dxz, Dyz, Dzz on the
            last (5th) dimension of the volume (shape: (i, j, k, 1, 6)). If
            `nifti_tensor` is False, this will be saved in an alternate format
            that is used by other software (e.g., FSL): a
            4-dimensional volume (shape (i, j, k, 6)) with Dxx, Dxy, Dxz, Dyy,
            Dyz, Dzz on the last dimension.
        out_fa : string, optional
            Name of the fractional anisotropy volume to be saved.
        out_ga : string, optional
            Name of the geodesic anisotropy volume to be saved.
        out_rgb : string, optional
            Name of the color fa volume to be saved.
        out_md : string, optional
            Name of the mean diffusivity volume to be saved.
        out_ad : string, optional
            Name of the axial diffusivity volume to be saved.
        out_rd : string, optional
            Name of the radial diffusivity volume to be saved.
        out_mode : string, optional
            Name of the mode volume to be saved.
        out_evec : string, optional
            Name of the eigenvectors volume to be saved.
        out_eval : string, optional
            Name of the eigenvalues to be saved.
        nifti_tensor : bool, optional
            Whether the tensor is saved in the standard Nifti format or in an
            alternate format
            that is used by other software (e.g., FSL): a
            4-dimensional volume (shape (i, j, k, 6)) with
            Dxx, Dxy, Dxz, Dyy, Dyz, Dzz on the last dimension.

        References
        ----------
        .. [1] Basser, P.J., Mattiello, J., LeBihan, D., 1994. Estimation of
           the effective self-diffusion tensor from the NMR spin echo. J Magn
           Reson B 103, 247-254.

        .. [2] Basser, P., Pierpaoli, C., 1996. Microstructural and
           physiological features of tissues elucidated by quantitative
           diffusion-tensor MRI.  Journal of Magnetic Resonance 111, 209-219.

        .. [3] Lin-Ching C., Jones D.K., Pierpaoli, C. 2005. RESTORE: Robust
           estimation of tensors by outlier rejection. MRM 53: 1088-1095

        .. [4] hung, SW., Lu, Y., Henry, R.G., 2006. Comparison of bootstrap
           approaches for estimation of uncertainties of DTI parameters.
           NeuroImage 33, 531-541.

        """
        io_it = self.get_io_iterator()

        for dwi, bval, bvec, mask, otensor, ofa, oga, orgb, omd, oad, orad, \
                omode, oevecs, oevals in io_it:

            logging.info('Computing DTI metrics for {0}'.format(dwi))
            data, affine = load_nifti(dwi)

            if mask is not None:
                mask = load_nifti_data(mask).astype(bool)

            tenfit, _ = self.get_fitted_tensor(data, mask, bval, bvec,
                                               b0_threshold, bvecs_tol)

            if not save_metrics:
                save_metrics = [
                    'fa', 'md', 'rd', 'ad', 'ga', 'rgb', 'mode', 'evec',
                    'eval', 'tensor'
                ]

            FA = fractional_anisotropy(tenfit.evals)
            FA[np.isnan(FA)] = 0
            FA = np.clip(FA, 0, 1)

            if 'tensor' in save_metrics:
                tensor_vals = lower_triangular(tenfit.quadratic_form)

                if nifti_tensor:
                    ten_img = nifti1_symmat(tensor_vals, affine=affine)
                else:
                    alt_order = [0, 1, 3, 2, 4, 5]
                    ten_img = nib.Nifti1Image(
                        tensor_vals[..., alt_order].astype(np.float32), affine)

                nib.save(ten_img, otensor)

            if 'fa' in save_metrics:
                save_nifti(ofa, FA.astype(np.float32), affine)

            if 'ga' in save_metrics:
                GA = geodesic_anisotropy(tenfit.evals)
                save_nifti(oga, GA.astype(np.float32), affine)

            if 'rgb' in save_metrics:
                RGB = color_fa(FA, tenfit.evecs)
                save_nifti(orgb, np.array(255 * RGB, 'uint8'), affine)

            if 'md' in save_metrics:
                MD = mean_diffusivity(tenfit.evals)
                save_nifti(omd, MD.astype(np.float32), affine)

            if 'ad' in save_metrics:
                AD = axial_diffusivity(tenfit.evals)
                save_nifti(oad, AD.astype(np.float32), affine)

            if 'rd' in save_metrics:
                RD = radial_diffusivity(tenfit.evals)
                save_nifti(orad, RD.astype(np.float32), affine)

            if 'mode' in save_metrics:
                MODE = get_mode(tenfit.quadratic_form)
                save_nifti(omode, MODE.astype(np.float32), affine)

            if 'evec' in save_metrics:
                save_nifti(oevecs, tenfit.evecs.astype(np.float32), affine)

            if 'eval' in save_metrics:
                save_nifti(oevals, tenfit.evals.astype(np.float32), affine)

            dname_ = os.path.dirname(oevals)
            if dname_ == '':
                logging.info('DTI metrics saved in current directory')
            else:
                logging.info('DTI metrics saved in {0}'.format(dname_))
Ejemplo n.º 4
0
    def run(self,
            input_files,
            bvalues_files,
            bvectors_files,
            mask_files,
            b0_threshold=50.0,
            save_metrics=[],
            out_dir='',
            out_dt_tensor='dti_tensors.nii.gz',
            out_fa='fa.nii.gz',
            out_ga='ga.nii.gz',
            out_rgb='rgb.nii.gz',
            out_md='md.nii.gz',
            out_ad='ad.nii.gz',
            out_rd='rd.nii.gz',
            out_mode='mode.nii.gz',
            out_evec='evecs.nii.gz',
            out_eval='evals.nii.gz',
            out_dk_tensor="dki_tensors.nii.gz",
            out_mk="mk.nii.gz",
            out_ak="ak.nii.gz",
            out_rk="rk.nii.gz"):
        """ Workflow for Diffusion Kurtosis reconstruction and for computing
        DKI metrics. Performs a DKI reconstruction on the files by 'globing'
        ``input_files`` and saves the DKI metrics in a directory specified by
        ``out_dir``.

        Parameters
        ----------
        input_files : string
            Path to the input volumes. This path may contain wildcards to
            process multiple inputs at once.
        bvalues_files : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        bvectors_files : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        mask_files : string
            Path to the input masks. This path may contain wildcards to use
            multiple masks at once. (default: No mask used)
        b0_threshold : float, optional
            Threshold used to find b0 volumes.
        save_metrics : variable string, optional
            List of metrics to save.
            Possible values: fa, ga, rgb, md, ad, rd, mode, tensor, evec, eval
        out_dir : string, optional
            Output directory. (default current directory)
        out_dt_tensor : string, optional
            Name of the tensors volume to be saved.
        out_dk_tensor : string, optional
            Name of the tensors volume to be saved.
        out_fa : string, optional
            Name of the fractional anisotropy volume to be saved.
        out_ga : string, optional
            Name of the geodesic anisotropy volume to be saved.
        out_rgb : string, optional
            Name of the color fa volume to be saved.
        out_md : string, optional
            Name of the mean diffusivity volume to be saved.
        out_ad : string, optional
            Name of the axial diffusivity volume to be saved.
        out_rd : string, optional
            Name of the radial diffusivity volume to be saved.
        out_mode : string, optional
            Name of the mode volume to be saved.
        out_evec : string, optional
            Name of the eigenvectors volume to be saved.
        out_eval : string, optional
            Name of the eigenvalues to be saved.
        out_mk : string, optional
            Name of the mean kurtosis to be saved.
        out_ak : string, optional
            Name of the axial kurtosis to be saved.
        out_rk : string, optional
            Name of the radial kurtosis to be saved.

        References
        ----------

        .. [1] Tabesh, A., Jensen, J.H., Ardekani, B.A., Helpern, J.A., 2011.
           Estimation of tensors and tensor-derived measures in diffusional
           kurtosis imaging. Magn Reson Med. 65(3), 823-836

        .. [2] Jensen, Jens H., Joseph A. Helpern, Anita Ramani, Hanzhang Lu,
           and Kyle Kaczynski. 2005. Diffusional Kurtosis Imaging: The
           Quantification of Non-Gaussian Water Diffusion by Means of Magnetic
           Resonance Imaging. MRM 53 (6):1432-40.
        """
        io_it = self.get_io_iterator()

        for (dwi, bval, bvec, mask, otensor, ofa, oga, orgb, omd, oad, orad,
             omode, oevecs, oevals, odk_tensor, omk, oak, ork) in io_it:

            logging.info('Computing DKI metrics for {0}'.format(dwi))
            data, affine = load_nifti(dwi)

            if mask is not None:
                mask = load_nifti_data(mask).astype(bool)

            dkfit, _ = self.get_fitted_tensor(data, mask, bval, bvec,
                                              b0_threshold)

            if not save_metrics:
                save_metrics = [
                    'mk', 'rk', 'ak', 'fa', 'md', 'rd', 'ad', 'ga', 'rgb',
                    'mode', 'evec', 'eval', 'dt_tensor', 'dk_tensor'
                ]

            evals, evecs, kt = split_dki_param(dkfit.model_params)
            FA = fractional_anisotropy(evals)
            FA[np.isnan(FA)] = 0
            FA = np.clip(FA, 0, 1)

            if 'dt_tensor' in save_metrics:
                tensor_vals = lower_triangular(dkfit.quadratic_form)
                correct_order = [0, 1, 3, 2, 4, 5]
                tensor_vals_reordered = tensor_vals[..., correct_order]
                save_nifti(otensor, tensor_vals_reordered.astype(np.float32),
                           affine)

            if 'dk_tensor' in save_metrics:
                save_nifti(odk_tensor, dkfit.kt.astype(np.float32), affine)

            if 'fa' in save_metrics:
                save_nifti(ofa, FA.astype(np.float32), affine)

            if 'ga' in save_metrics:
                GA = geodesic_anisotropy(dkfit.evals)
                save_nifti(oga, GA.astype(np.float32), affine)

            if 'rgb' in save_metrics:
                RGB = color_fa(FA, dkfit.evecs)
                save_nifti(orgb, np.array(255 * RGB, 'uint8'), affine)

            if 'md' in save_metrics:
                MD = mean_diffusivity(dkfit.evals)
                save_nifti(omd, MD.astype(np.float32), affine)

            if 'ad' in save_metrics:
                AD = axial_diffusivity(dkfit.evals)
                save_nifti(oad, AD.astype(np.float32), affine)

            if 'rd' in save_metrics:
                RD = radial_diffusivity(dkfit.evals)
                save_nifti(orad, RD.astype(np.float32), affine)

            if 'mode' in save_metrics:
                MODE = get_mode(dkfit.quadratic_form)
                save_nifti(omode, MODE.astype(np.float32), affine)

            if 'evec' in save_metrics:
                save_nifti(oevecs, dkfit.evecs.astype(np.float32), affine)

            if 'eval' in save_metrics:
                save_nifti(oevals, dkfit.evals.astype(np.float32), affine)

            if 'mk' in save_metrics:
                save_nifti(omk, dkfit.mk().astype(np.float32), affine)

            if 'ak' in save_metrics:
                save_nifti(oak, dkfit.ak().astype(np.float32), affine)

            if 'rk' in save_metrics:
                save_nifti(ork, dkfit.rk().astype(np.float32), affine)

            logging.info('DKI metrics saved in {0}'.format(
                os.path.dirname(oevals)))
Ejemplo n.º 5
0
def main():
    parser = _build_args_parser()
    args = parser.parse_args()

    if not args.not_all:
        args.fa = args.fa or 'fa.nii.gz'
        args.ga = args.ga or 'ga.nii.gz'
        args.rgb = args.rgb or 'rgb.nii.gz'
        args.md = args.md or 'md.nii.gz'
        args.ad = args.ad or 'ad.nii.gz'
        args.rd = args.rd or 'rd.nii.gz'
        args.mode = args.mode or 'mode.nii.gz'
        args.norm = args.norm or 'tensor_norm.nii.gz'
        args.tensor = args.tensor or 'tensor.nii.gz'
        args.evecs = args.evecs or 'tensor_evecs.nii.gz'
        args.evals = args.evals or 'tensor_evals.nii.gz'
        args.residual = args.residual or 'dti_residual.nii.gz'
        args.p_i_signal =\
            args.p_i_signal or 'physically_implausible_signals_mask.nii.gz'
        args.pulsation = args.pulsation or 'pulsation_and_misalignment.nii.gz'

    outputs = [args.fa, args.ga, args.rgb, args.md, args.ad, args.rd,
               args.mode, args.norm, args.tensor, args.evecs, args.evals,
               args.residual, args.p_i_signal, args.pulsation]
    if args.not_all and not any(outputs):
        parser.error('When using --not_all, you need to specify at least ' +
                     'one metric to output.')

    assert_inputs_exist(
        parser, [args.input, args.bvals, args.bvecs], [args.mask])
    assert_outputs_exists(parser, args, outputs)

    img = nib.load(args.input)
    data = img.get_data()
    affine = img.get_affine()
    if args.mask is None:
        mask = None
    else:
        mask = nib.load(args.mask).get_data().astype(np.bool)

    # Validate bvals and bvecs
    logging.info('Tensor estimation with the %s method...', args.method)
    bvals, bvecs = read_bvals_bvecs(args.bvals, args.bvecs)

    if not is_normalized_bvecs(bvecs):
        logging.warning('Your b-vectors do not seem normalized...')
        bvecs = normalize_bvecs(bvecs)

    check_b0_threshold(args, bvals.min())
    gtab = gradient_table(bvals, bvecs, b0_threshold=bvals.min())

    # Get tensors
    if args.method == 'restore':
        sigma = ne.estimate_sigma(data)
        tenmodel = TensorModel(gtab, fit_method=args.method, sigma=sigma,
                               min_signal=_get_min_nonzero_signal(data))
    else:
        tenmodel = TensorModel(gtab, fit_method=args.method,
                               min_signal=_get_min_nonzero_signal(data))

    tenfit = tenmodel.fit(data, mask)

    FA = fractional_anisotropy(tenfit.evals)
    FA[np.isnan(FA)] = 0
    FA = np.clip(FA, 0, 1)

    if args.tensor:
        # Get the Tensor values and format them for visualisation
        # in the Fibernavigator.
        tensor_vals = lower_triangular(tenfit.quadratic_form)
        correct_order = [0, 1, 3, 2, 4, 5]
        tensor_vals_reordered = tensor_vals[..., correct_order]
        fiber_tensors = nib.Nifti1Image(
            tensor_vals_reordered.astype(np.float32), affine)
        nib.save(fiber_tensors, args.tensor)

    if args.fa:
        fa_img = nib.Nifti1Image(FA.astype(np.float32), affine)
        nib.save(fa_img, args.fa)

    if args.ga:
        GA = geodesic_anisotropy(tenfit.evals)
        GA[np.isnan(GA)] = 0

        ga_img = nib.Nifti1Image(GA.astype(np.float32), affine)
        nib.save(ga_img, args.ga)

    if args.rgb:
        RGB = color_fa(FA, tenfit.evecs)
        rgb_img = nib.Nifti1Image(np.array(255 * RGB, 'uint8'), affine)
        nib.save(rgb_img, args.rgb)

    if args.md:
        MD = mean_diffusivity(tenfit.evals)
        md_img = nib.Nifti1Image(MD.astype(np.float32), affine)
        nib.save(md_img, args.md)

    if args.ad:
        AD = axial_diffusivity(tenfit.evals)
        ad_img = nib.Nifti1Image(AD.astype(np.float32), affine)
        nib.save(ad_img, args.ad)

    if args.rd:
        RD = radial_diffusivity(tenfit.evals)
        rd_img = nib.Nifti1Image(RD.astype(np.float32), affine)
        nib.save(rd_img, args.rd)

    if args.mode:
        # Compute tensor mode
        inter_mode = dipy_mode(tenfit.quadratic_form)

        # Since the mode computation can generate NANs when not masked,
        # we need to remove them.
        non_nan_indices = np.isfinite(inter_mode)
        mode = np.zeros(inter_mode.shape)
        mode[non_nan_indices] = inter_mode[non_nan_indices]

        mode_img = nib.Nifti1Image(mode.astype(np.float32), affine)
        nib.save(mode_img, args.mode)

    if args.norm:
        NORM = norm(tenfit.quadratic_form)
        norm_img = nib.Nifti1Image(NORM.astype(np.float32), affine)
        nib.save(norm_img, args.norm)

    if args.evecs:
        evecs = tenfit.evecs.astype(np.float32)
        evecs_img = nib.Nifti1Image(evecs, affine)
        nib.save(evecs_img, args.evecs)

        # save individual e-vectors also
        e1_img = nib.Nifti1Image(evecs[..., 0], affine)
        e2_img = nib.Nifti1Image(evecs[..., 1], affine)
        e3_img = nib.Nifti1Image(evecs[..., 2], affine)

        nib.save(e1_img, add_filename_suffix(args.evecs, '_v1'))
        nib.save(e2_img, add_filename_suffix(args.evecs, '_v2'))
        nib.save(e3_img, add_filename_suffix(args.evecs, '_v3'))

    if args.evals:
        evals = tenfit.evals.astype(np.float32)
        evals_img = nib.Nifti1Image(evals, affine)
        nib.save(evals_img, args.evals)

        # save individual e-values also
        e1_img = nib.Nifti1Image(evals[..., 0], affine)
        e2_img = nib.Nifti1Image(evals[..., 1], affine)
        e3_img = nib.Nifti1Image(evals[..., 2], affine)

        nib.save(e1_img, add_filename_suffix(args.evals, '_e1'))
        nib.save(e2_img, add_filename_suffix(args.evals, '_e2'))
        nib.save(e3_img, add_filename_suffix(args.evals, '_e3'))

    if args.p_i_signal:
        S0 = np.mean(data[..., gtab.b0s_mask], axis=-1, keepdims=True)
        DWI = data[..., ~gtab.b0s_mask]
        pis_mask = np.max(S0 < DWI, axis=-1)

        if args.mask is not None:
            pis_mask *= mask

        pis_img = nib.Nifti1Image(pis_mask.astype(np.int16), affine)
        nib.save(pis_img, args.p_i_signal)

    if args.pulsation:
        STD = np.std(data[..., ~gtab.b0s_mask], axis=-1)

        if args.mask is not None:
            STD *= mask

        std_img = nib.Nifti1Image(STD.astype(np.float32), affine)
        nib.save(std_img, add_filename_suffix(args.pulsation, '_std_dwi'))

        if np.sum(gtab.b0s_mask) <= 1:
            logger.info('Not enough b=0 images to output standard '
                        'deviation map')
        else:
            if len(np.where(gtab.b0s_mask)) == 2:
                logger.info('Only two b=0 images. Be careful with the '
                            'interpretation of this std map')

            STD = np.std(data[..., gtab.b0s_mask], axis=-1)

            if args.mask is not None:
                STD *= mask

            std_img = nib.Nifti1Image(STD.astype(np.float32), affine)
            nib.save(std_img, add_filename_suffix(args.pulsation, '_std_b0'))

    if args.residual:
        if args.mask is None:
            logger.info("Outlier detection will not be performed, since no "
                        "mask was provided.")
        S0 = np.mean(data[..., gtab.b0s_mask], axis=-1)
        data_p = tenfit.predict(gtab, S0)
        R = np.mean(np.abs(data_p[..., ~gtab.b0s_mask] -
                           data[..., ~gtab.b0s_mask]), axis=-1)

        if args.mask is not None:
            R *= mask

        R_img = nib.Nifti1Image(R.astype(np.float32), affine)
        nib.save(R_img, args.residual)

        R_k = np.zeros(data.shape[-1])  # mean residual per DWI
        std = np.zeros(data.shape[-1])  # std residual per DWI
        q1 = np.zeros(data.shape[-1])   # first quartile
        q3 = np.zeros(data.shape[-1])   # third quartile
        iqr = np.zeros(data.shape[-1])  # interquartile
        for i in range(data.shape[-1]):
            x = np.abs(data_p[..., i] - data[..., i])[mask]
            R_k[i] = np.mean(x)
            std[i] = np.std(x)
            q3[i], q1[i] = np.percentile(x, [75, 25])
            iqr[i] = q3[i] - q1[i]

            # Outliers are observations that fall below Q1 - 1.5(IQR) or
            # above Q3 + 1.5(IQR) We check if a volume is an outlier only if
            # we have a mask, else we are biased.
            if args.mask is not None and R_k[i] < (q1[i] - 1.5 * iqr[i]) \
                    or R_k[i] > (q3[i] + 1.5 * iqr[i]):
                logger.warning('WARNING: Diffusion-Weighted Image i=%s is an '
                               'outlier', i)

        residual_basename, _ = split_name_with_nii(args.residual)
        res_stats_basename = residual_basename + ".npy"
        np.save(add_filename_suffix(
            res_stats_basename, "_mean_residuals"), R_k)
        np.save(add_filename_suffix(res_stats_basename, "_q1_residuals"), q1)
        np.save(add_filename_suffix(res_stats_basename, "_q3_residuals"), q3)
        np.save(add_filename_suffix(res_stats_basename, "_iqr_residuals"), iqr)
        np.save(add_filename_suffix(res_stats_basename, "_std_residuals"), std)

        # To do: I would like to have an error bar with q1 and q3.
        # Now, q1 acts as a std
        dwi = np.arange(R_k[~gtab.b0s_mask].shape[0])
        plt.bar(dwi, R_k[~gtab.b0s_mask], 0.75,
                color='y', yerr=q1[~gtab.b0s_mask])
        plt.xlabel('DW image')
        plt.ylabel('Mean residuals +- q1')
        plt.title('Residuals')
        plt.savefig(residual_basename + '_residuals_stats.png')
Ejemplo n.º 6
0
def test_ga_of_zero():
    evals = np.zeros((4, 3))
    ga = geodesic_anisotropy(evals)
    assert_array_equal(ga, 0)
Ejemplo n.º 7
0
    def run(self,
            input_files,
            bvalues_files,
            bvectors_files,
            mask_files,
            b0_threshold=0.0,
            bvecs_tol=0.01,
            save_metrics=[],
            out_dir='',
            out_tensor='tensors.nii.gz',
            out_fa='fa.nii.gz',
            out_ga='ga.nii.gz',
            out_rgb='rgb.nii.gz',
            out_md='md.nii.gz',
            out_ad='ad.nii.gz',
            out_rd='rd.nii.gz',
            out_mode='mode.nii.gz',
            out_evec='evecs.nii.gz',
            out_eval='evals.nii.gz'):
        """ Workflow for tensor reconstruction and for computing DTI metrics.
        using Weighted Least-Squares.
        Performs a tensor reconstruction on the files by 'globing'
        ``input_files`` and saves the DTI metrics in a directory specified by
        ``out_dir``.

        Parameters
        ----------
        input_files : string
            Path to the input volumes. This path may contain wildcards to
            process multiple inputs at once.
        bvalues_files : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        bvectors_files : string
            Path to the bvectors files. This path may contain wildcards to use
            multiple bvectors files at once.
        mask_files : string
            Path to the input masks. This path may contain wildcards to use
            multiple masks at once. (default: No mask used)
        b0_threshold : float, optional
            Threshold used to find b=0 directions (default 0.0)
        bvecs_tol : float, optional
            Threshold used to check that norm(bvec) = 1 +/- bvecs_tol
            b-vectors are unit vectors (default 0.01)
        save_metrics : variable string, optional
            List of metrics to save.
            Possible values: fa, ga, rgb, md, ad, rd, mode, tensor, evec, eval
            (default [] (all))
        out_dir : string, optional
            Output directory (default input file directory)
        out_tensor : string, optional
            Name of the tensors volume to be saved (default 'tensors.nii.gz')
        out_fa : string, optional
            Name of the fractional anisotropy volume to be saved
            (default 'fa.nii.gz')
        out_ga : string, optional
            Name of the geodesic anisotropy volume to be saved
            (default 'ga.nii.gz')
        out_rgb : string, optional
            Name of the color fa volume to be saved (default 'rgb.nii.gz')
        out_md : string, optional
            Name of the mean diffusivity volume to be saved
            (default 'md.nii.gz')
        out_ad : string, optional
            Name of the axial diffusivity volume to be saved
            (default 'ad.nii.gz')
        out_rd : string, optional
            Name of the radial diffusivity volume to be saved
            (default 'rd.nii.gz')
        out_mode : string, optional
            Name of the mode volume to be saved (default 'mode.nii.gz')
        out_evec : string, optional
            Name of the eigenvectors volume to be saved
            (default 'evecs.nii.gz')
        out_eval : string, optional
            Name of the eigenvalues to be saved (default 'evals.nii.gz')

        References
        ----------
        .. [1] Basser, P.J., Mattiello, J., LeBihan, D., 1994. Estimation of
           the effective self-diffusion tensor from the NMR spin echo. J Magn
           Reson B 103, 247-254.

        .. [2] Basser, P., Pierpaoli, C., 1996. Microstructural and
           physiological features of tissues elucidated by quantitative
           diffusion-tensor MRI.  Journal of Magnetic Resonance 111, 209-219.

        .. [3] Lin-Ching C., Jones D.K., Pierpaoli, C. 2005. RESTORE: Robust
           estimation of tensors by outlier rejection. MRM 53: 1088-1095

        .. [4] hung, SW., Lu, Y., Henry, R.G., 2006. Comparison of bootstrap
           approaches for estimation of uncertainties of DTI parameters.
           NeuroImage 33, 531-541.

        """
        io_it = self.get_io_iterator()

        for dwi, bval, bvec, mask, otensor, ofa, oga, orgb, omd, oad, orad, \
                omode, oevecs, oevals in io_it:

            logging.info('Computing DTI metrics for {0}'.format(dwi))
            img = nib.load(dwi)
            data = img.get_data()
            affine = img.affine

            if mask is not None:
                mask = nib.load(mask).get_data().astype(np.bool)

            tenfit, _ = self.get_fitted_tensor(data, mask, bval, bvec,
                                               b0_threshold, bvecs_tol)

            if not save_metrics:
                save_metrics = [
                    'fa', 'md', 'rd', 'ad', 'ga', 'rgb', 'mode', 'evec',
                    'eval', 'tensor'
                ]

            FA = fractional_anisotropy(tenfit.evals)
            FA[np.isnan(FA)] = 0
            FA = np.clip(FA, 0, 1)

            if 'tensor' in save_metrics:
                tensor_vals = lower_triangular(tenfit.quadratic_form)
                correct_order = [0, 1, 3, 2, 4, 5]
                tensor_vals_reordered = tensor_vals[..., correct_order]
                fiber_tensors = nib.Nifti1Image(
                    tensor_vals_reordered.astype(np.float32), affine)
                nib.save(fiber_tensors, otensor)

            if 'fa' in save_metrics:
                fa_img = nib.Nifti1Image(FA.astype(np.float32), affine)
                nib.save(fa_img, ofa)

            if 'ga' in save_metrics:
                GA = geodesic_anisotropy(tenfit.evals)
                ga_img = nib.Nifti1Image(GA.astype(np.float32), affine)
                nib.save(ga_img, oga)

            if 'rgb' in save_metrics:
                RGB = color_fa(FA, tenfit.evecs)
                rgb_img = nib.Nifti1Image(np.array(255 * RGB, 'uint8'), affine)
                nib.save(rgb_img, orgb)

            if 'md' in save_metrics:
                MD = mean_diffusivity(tenfit.evals)
                md_img = nib.Nifti1Image(MD.astype(np.float32), affine)
                nib.save(md_img, omd)

            if 'ad' in save_metrics:
                AD = axial_diffusivity(tenfit.evals)
                ad_img = nib.Nifti1Image(AD.astype(np.float32), affine)
                nib.save(ad_img, oad)

            if 'rd' in save_metrics:
                RD = radial_diffusivity(tenfit.evals)
                rd_img = nib.Nifti1Image(RD.astype(np.float32), affine)
                nib.save(rd_img, orad)

            if 'mode' in save_metrics:
                MODE = get_mode(tenfit.quadratic_form)
                mode_img = nib.Nifti1Image(MODE.astype(np.float32), affine)
                nib.save(mode_img, omode)

            if 'evec' in save_metrics:
                evecs_img = nib.Nifti1Image(tenfit.evecs.astype(np.float32),
                                            affine)
                nib.save(evecs_img, oevecs)

            if 'eval' in save_metrics:
                evals_img = nib.Nifti1Image(tenfit.evals.astype(np.float32),
                                            affine)
                nib.save(evals_img, oevals)

            dname_ = os.path.dirname(oevals)
            if dname_ == '':
                logging.info('DTI metrics saved in current directory')
            else:
                logging.info('DTI metrics saved in {0}'.format(dname_))
Ejemplo n.º 8
0
    def run(self, input_files, bvalues, bvectors, mask_files, b0_threshold=0.0,
            save_metrics=[],
            out_dir='', out_tensor='tensors.nii.gz', out_fa='fa.nii.gz',
            out_ga='ga.nii.gz', out_rgb='rgb.nii.gz', out_md='md.nii.gz',
            out_ad='ad.nii.gz', out_rd='rd.nii.gz', out_mode='mode.nii.gz',
            out_evec='evecs.nii.gz', out_eval='evals.nii.gz'):

        """ Workflow for tensor reconstruction and for computing DTI metrics.
        Performs a tensor reconstruction on the files by 'globing'
        ``input_files`` and saves the DTI metrics in a directory specified by
        ``out_dir``.

        Parameters
        ----------
        input_files : string
            Path to the input volumes. This path may contain wildcards to
            process multiple inputs at once.
        bvalues : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        bvectors : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        mask_files : string
            Path to the input masks. This path may contain wildcards to use
            multiple masks at once. (default: No mask used)
        b0_threshold : float, optional
            Threshold used to find b=0 directions (default 0.0)
        save_metrics : variable string, optional
            List of metrics to save.
            Possible values: fa, ga, rgb, md, ad, rd, mode, tensor, evec, eval
            (default [] (all))
        out_dir : string, optional
            Output directory (default input file directory)
        out_tensor : string, optional
            Name of the tensors volume to be saved (default 'tensors.nii.gz')
        out_fa : string, optional
            Name of the fractional anisotropy volume to be saved
            (default 'fa.nii.gz')
        out_ga : string, optional
            Name of the geodesic anisotropy volume to be saved
            (default 'ga.nii.gz')
        out_rgb : string, optional
            Name of the color fa volume to be saved (default 'rgb.nii.gz')
        out_md : string, optional
            Name of the mean diffusivity volume to be saved
            (default 'md.nii.gz')
        out_ad : string, optional
            Name of the axial diffusivity volume to be saved
            (default 'ad.nii.gz')
        out_rd : string, optional
            Name of the radial diffusivity volume to be saved
            (default 'rd.nii.gz')
        out_mode : string, optional
            Name of the mode volume to be saved (default 'mode.nii.gz')
        out_evec : string, optional
            Name of the eigenvectors volume to be saved
            (default 'evecs.nii.gz')
        out_eval : string, optional
            Name of the eigenvalues to be saved (default 'evals.nii.gz')
        """
        io_it = self.get_io_iterator()

        for dwi, bval, bvec, mask, otensor, ofa, oga, orgb, omd, oad, orad, \
            omode, oevecs, oevals in io_it:

            logging.info('Computing DTI metrics for {0}'.format(dwi))

            img = nib.load(dwi)
            data = img.get_data()
            affine = img.get_affine()

            if mask is None:
                mask = None
            else:
                mask = nib.load(mask).get_data().astype(np.bool)

            tenfit, _ = self.get_fitted_tensor(data, mask, bval, bvec,
                                               b0_threshold)

            if not save_metrics:
                save_metrics = ['fa', 'md', 'rd', 'ad', 'ga', 'rgb', 'mode',
                                'evec', 'eval', 'tensor']

            FA = fractional_anisotropy(tenfit.evals)
            FA[np.isnan(FA)] = 0
            FA = np.clip(FA, 0, 1)

            if 'tensor' in save_metrics:
                tensor_vals = lower_triangular(tenfit.quadratic_form)
                correct_order = [0, 1, 3, 2, 4, 5]
                tensor_vals_reordered = tensor_vals[..., correct_order]
                fiber_tensors = nib.Nifti1Image(tensor_vals_reordered.astype(
                    np.float32), affine)
                nib.save(fiber_tensors, otensor)

            if 'fa' in save_metrics:
                fa_img = nib.Nifti1Image(FA.astype(np.float32), affine)
                nib.save(fa_img, ofa)

            if 'ga' in save_metrics:
                GA = geodesic_anisotropy(tenfit.evals)
                ga_img = nib.Nifti1Image(GA.astype(np.float32), affine)
                nib.save(ga_img, oga)

            if 'rgb' in save_metrics:
                RGB = color_fa(FA, tenfit.evecs)
                rgb_img = nib.Nifti1Image(np.array(255 * RGB, 'uint8'), affine)
                nib.save(rgb_img, orgb)

            if 'md' in save_metrics:
                MD = mean_diffusivity(tenfit.evals)
                md_img = nib.Nifti1Image(MD.astype(np.float32), affine)
                nib.save(md_img, omd)

            if 'ad' in save_metrics:
                AD = axial_diffusivity(tenfit.evals)
                ad_img = nib.Nifti1Image(AD.astype(np.float32), affine)
                nib.save(ad_img, oad)

            if 'rd' in save_metrics:
                RD = radial_diffusivity(tenfit.evals)
                rd_img = nib.Nifti1Image(RD.astype(np.float32), affine)
                nib.save(rd_img, orad)

            if 'mode' in save_metrics:
                MODE = get_mode(tenfit.quadratic_form)
                mode_img = nib.Nifti1Image(MODE.astype(np.float32), affine)
                nib.save(mode_img, omode)

            if 'evec' in save_metrics:
                evecs_img = nib.Nifti1Image(tenfit.evecs.astype(np.float32), affine)
                nib.save(evecs_img, oevecs)

            if 'eval' in save_metrics:
                evals_img = nib.Nifti1Image(tenfit.evals.astype(np.float32), affine)
                nib.save(evals_img, oevals)

            logging.info('DTI metrics saved in {0}'.
                         format(os.path.dirname(oevals)))
Ejemplo n.º 9
0
    def run(self,
            input_files,
            bvalues,
            bvectors,
            mask_files,
            b0_threshold=0.0,
            save_metrics=[],
            out_dir='',
            out_tensor='tensors.nii.gz',
            out_fa='fa.nii.gz',
            out_ga='ga.nii.gz',
            out_rgb='rgb.nii.gz',
            out_md='md.nii.gz',
            out_ad='ad.nii.gz',
            out_rd='rd.nii.gz',
            out_mode='mode.nii.gz',
            out_evec='evecs.nii.gz',
            out_eval='evals.nii.gz'):
        """ Workflow for tensor reconstruction and for computing DTI metrics.
        Performs a tensor reconstruction on the files by 'globing'
        ``input_files`` and saves the DTI metrics in a directory specified by
        ``out_dir``.

        Parameters
        ----------
        input_files : string
            Path to the input volumes. This path may contain wildcards to
            process multiple inputs at once.
        bvalues : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        bvectors : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        mask_files : string
            Path to the input masks. This path may contain wildcards to use
            multiple masks at once. (default: No mask used)
        b0_threshold : float, optional
            Threshold used to find b=0 directions (default 0.0)
        save_metrics : variable string, optional
            List of metrics to save.
            Possible values: fa, ga, rgb, md, ad, rd, mode, tensor, evec, eval
            (default [] (all))
        out_dir : string, optional
            Output directory (default input file directory)
        out_tensor : string, optional
            Name of the tensors volume to be saved (default 'tensors.nii.gz')
        out_fa : string, optional
            Name of the fractional anisotropy volume to be saved
            (default 'fa.nii.gz')
        out_ga : string, optional
            Name of the geodesic anisotropy volume to be saved
            (default 'ga.nii.gz')
        out_rgb : string, optional
            Name of the color fa volume to be saved (default 'rgb.nii.gz')
        out_md : string, optional
            Name of the mean diffusivity volume to be saved
            (default 'md.nii.gz')
        out_ad : string, optional
            Name of the axial diffusivity volume to be saved
            (default 'ad.nii.gz')
        out_rd : string, optional
            Name of the radial diffusivity volume to be saved
            (default 'rd.nii.gz')
        out_mode : string, optional
            Name of the mode volume to be saved (default 'mode.nii.gz')
        out_evec : string, optional
            Name of the eigenvectors volume to be saved
            (default 'evecs.nii.gz')
        out_eval : string, optional
            Name of the eigenvalues to be saved (default 'evals.nii.gz')
        """
        io_it = self.get_io_iterator()

        for dwi, bval, bvec, mask, otensor, ofa, oga, orgb, omd, oad, orad, \
            omode, oevecs, oevals in io_it:

            logging.info('Computing DTI metrics for {0}'.format(dwi))

            img = nib.load(dwi)
            data = img.get_data()
            affine = img.get_affine()

            if mask is None:
                mask = None
            else:
                mask = nib.load(mask).get_data().astype(np.bool)

            tenfit, _ = self.get_fitted_tensor(data, mask, bval, bvec,
                                               b0_threshold)

            if not save_metrics:
                save_metrics = [
                    'fa', 'md', 'rd', 'ad', 'ga', 'rgb', 'mode', 'evec',
                    'eval', 'tensor'
                ]

            FA = fractional_anisotropy(tenfit.evals)
            FA[np.isnan(FA)] = 0
            FA = np.clip(FA, 0, 1)

            if 'tensor' in save_metrics:
                tensor_vals = lower_triangular(tenfit.quadratic_form)
                correct_order = [0, 1, 3, 2, 4, 5]
                tensor_vals_reordered = tensor_vals[..., correct_order]
                fiber_tensors = nib.Nifti1Image(
                    tensor_vals_reordered.astype(np.float32), affine)
                nib.save(fiber_tensors, otensor)

            if 'fa' in save_metrics:
                fa_img = nib.Nifti1Image(FA.astype(np.float32), affine)
                nib.save(fa_img, ofa)

            if 'ga' in save_metrics:
                GA = geodesic_anisotropy(tenfit.evals)
                ga_img = nib.Nifti1Image(GA.astype(np.float32), affine)
                nib.save(ga_img, oga)

            if 'rgb' in save_metrics:
                RGB = color_fa(FA, tenfit.evecs)
                rgb_img = nib.Nifti1Image(np.array(255 * RGB, 'uint8'), affine)
                nib.save(rgb_img, orgb)

            if 'md' in save_metrics:
                MD = mean_diffusivity(tenfit.evals)
                md_img = nib.Nifti1Image(MD.astype(np.float32), affine)
                nib.save(md_img, omd)

            if 'ad' in save_metrics:
                AD = axial_diffusivity(tenfit.evals)
                ad_img = nib.Nifti1Image(AD.astype(np.float32), affine)
                nib.save(ad_img, oad)

            if 'rd' in save_metrics:
                RD = radial_diffusivity(tenfit.evals)
                rd_img = nib.Nifti1Image(RD.astype(np.float32), affine)
                nib.save(rd_img, orad)

            if 'mode' in save_metrics:
                MODE = get_mode(tenfit.quadratic_form)
                mode_img = nib.Nifti1Image(MODE.astype(np.float32), affine)
                nib.save(mode_img, omode)

            if 'evec' in save_metrics:
                evecs_img = nib.Nifti1Image(tenfit.evecs.astype(np.float32),
                                            affine)
                nib.save(evecs_img, oevecs)

            if 'eval' in save_metrics:
                evals_img = nib.Nifti1Image(tenfit.evals.astype(np.float32),
                                            affine)
                nib.save(evals_img, oevals)

            logging.info('DTI metrics saved in {0}'.format(
                os.path.dirname(oevals)))
Ejemplo n.º 10
0
    def run(self, input_files, bvalues_files, bvectors_files, mask_files,
            b0_threshold=50.0, save_metrics=[],
            out_dir='', out_dt_tensor='dti_tensors.nii.gz', out_fa='fa.nii.gz',
            out_ga='ga.nii.gz', out_rgb='rgb.nii.gz', out_md='md.nii.gz',
            out_ad='ad.nii.gz', out_rd='rd.nii.gz', out_mode='mode.nii.gz',
            out_evec='evecs.nii.gz', out_eval='evals.nii.gz',
            out_dk_tensor="dki_tensors.nii.gz",
            out_mk="mk.nii.gz", out_ak="ak.nii.gz", out_rk="rk.nii.gz"):
        """ Workflow for Diffusion Kurtosis reconstruction and for computing
        DKI metrics. Performs a DKI reconstruction on the files by 'globing'
        ``input_files`` and saves the DKI metrics in a directory specified by
        ``out_dir``.

        Parameters
        ----------
        input_files : string
            Path to the input volumes. This path may contain wildcards to
            process multiple inputs at once.
        bvalues_files : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        bvectors_files : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        mask_files : string
            Path to the input masks. This path may contain wildcards to use
            multiple masks at once. (default: No mask used)
        b0_threshold : float, optional
            Threshold used to find b=0 directions (default 0.0)
        save_metrics : variable string, optional
            List of metrics to save.
            Possible values: fa, ga, rgb, md, ad, rd, mode, tensor, evec, eval
            (default [] (all))
        out_dir : string, optional
            Output directory (default input file directory)
        out_dt_tensor : string, optional
            Name of the tensors volume to be saved
            (default: 'dti_tensors.nii.gz')
        out_dk_tensor : string, optional
            Name of the tensors volume to be saved
            (default 'dki_tensors.nii.gz')
        out_fa : string, optional
            Name of the fractional anisotropy volume to be saved
            (default 'fa.nii.gz')
        out_ga : string, optional
            Name of the geodesic anisotropy volume to be saved
            (default 'ga.nii.gz')
        out_rgb : string, optional
            Name of the color fa volume to be saved (default 'rgb.nii.gz')
        out_md : string, optional
            Name of the mean diffusivity volume to be saved
            (default 'md.nii.gz')
        out_ad : string, optional
            Name of the axial diffusivity volume to be saved
            (default 'ad.nii.gz')
        out_rd : string, optional
            Name of the radial diffusivity volume to be saved
            (default 'rd.nii.gz')
        out_mode : string, optional
            Name of the mode volume to be saved (default 'mode.nii.gz')
        out_evec : string, optional
            Name of the eigenvectors volume to be saved
            (default 'evecs.nii.gz')
        out_eval : string, optional
            Name of the eigenvalues to be saved (default 'evals.nii.gz')
        out_mk : string, optional
            Name of the mean kurtosis to be saved (default: 'mk.nii.gz')
        out_ak : string, optional
            Name of the axial kurtosis to be saved (default: 'ak.nii.gz')
        out_rk : string, optional
            Name of the radial kurtosis to be saved (default: 'rk.nii.gz')

        References
        ----------

        .. [1] Tabesh, A., Jensen, J.H., Ardekani, B.A., Helpern, J.A., 2011.
           Estimation of tensors and tensor-derived measures in diffusional
           kurtosis imaging. Magn Reson Med. 65(3), 823-836

        .. [2] Jensen, Jens H., Joseph A. Helpern, Anita Ramani, Hanzhang Lu,
           and Kyle Kaczynski. 2005. Diffusional Kurtosis Imaging: The
           Quantification of Non-Gaussian Water Diffusion by Means of Magnetic
           Resonance Imaging. MRM 53 (6):1432-40.
        """
        io_it = self.get_io_iterator()

        for (dwi, bval, bvec, mask, otensor, ofa, oga, orgb, omd, oad, orad,
             omode, oevecs, oevals, odk_tensor, omk, oak, ork) in io_it:

            logging.info('Computing DKI metrics for {0}'.format(dwi))
            data, affine = load_nifti(dwi)

            if mask is not None:
                mask = nib.load(mask).get_data().astype(np.bool)

            dkfit, _ = self.get_fitted_tensor(data, mask, bval, bvec,
                                              b0_threshold)

            if not save_metrics:
                save_metrics = ['mk', 'rk', 'ak', 'fa', 'md', 'rd', 'ad', 'ga',
                                'rgb', 'mode', 'evec', 'eval', 'dt_tensor',
                                'dk_tensor']

            evals, evecs, kt = split_dki_param(dkfit.model_params)
            FA = fractional_anisotropy(evals)
            FA[np.isnan(FA)] = 0
            FA = np.clip(FA, 0, 1)

            if 'dt_tensor' in save_metrics:
                tensor_vals = lower_triangular(dkfit.quadratic_form)
                correct_order = [0, 1, 3, 2, 4, 5]
                tensor_vals_reordered = tensor_vals[..., correct_order]
                save_nifti(otensor, tensor_vals_reordered.astype(np.float32),
                           affine)

            if 'dk_tensor' in save_metrics:
                save_nifti(odk_tensor, dkfit.kt.astype(np.float32), affine)

            if 'fa' in save_metrics:
                save_nifti(ofa, FA.astype(np.float32), affine)

            if 'ga' in save_metrics:
                GA = geodesic_anisotropy(dkfit.evals)
                save_nifti(oga, GA.astype(np.float32), affine)

            if 'rgb' in save_metrics:
                RGB = color_fa(FA, dkfit.evecs)
                save_nifti(orgb, np.array(255 * RGB, 'uint8'), affine)

            if 'md' in save_metrics:
                MD = mean_diffusivity(dkfit.evals)
                save_nifti(omd, MD.astype(np.float32), affine)

            if 'ad' in save_metrics:
                AD = axial_diffusivity(dkfit.evals)
                save_nifti(oad, AD.astype(np.float32), affine)

            if 'rd' in save_metrics:
                RD = radial_diffusivity(dkfit.evals)
                save_nifti(orad, RD.astype(np.float32), affine)

            if 'mode' in save_metrics:
                MODE = get_mode(dkfit.quadratic_form)
                save_nifti(omode, MODE.astype(np.float32), affine)

            if 'evec' in save_metrics:
                save_nifti(oevecs, dkfit.evecs.astype(np.float32), affine)

            if 'eval' in save_metrics:
                save_nifti(oevals, dkfit.evals.astype(np.float32), affine)

            if 'mk' in save_metrics:
                save_nifti(omk, dkfit.mk().astype(np.float32), affine)

            if 'ak' in save_metrics:
                save_nifti(oak, dkfit.ak().astype(np.float32), affine)

            if 'rk' in save_metrics:
                save_nifti(ork, dkfit.rk().astype(np.float32), affine)

            logging.info('DKI metrics saved in {0}'.
                         format(os.path.dirname(oevals)))
Ejemplo n.º 11
0
    def run(self, input_files, bvalues_files, bvectors_files, mask_files,
            b0_threshold=50, bvecs_tol=0.01, save_metrics=[],
            out_dir='', out_tensor='tensors.nii.gz', out_fa='fa.nii.gz',
            out_ga='ga.nii.gz', out_rgb='rgb.nii.gz', out_md='md.nii.gz',
            out_ad='ad.nii.gz', out_rd='rd.nii.gz', out_mode='mode.nii.gz',
            out_evec='evecs.nii.gz', out_eval='evals.nii.gz'):
        """ Workflow for tensor reconstruction and for computing DTI metrics.
        using Weighted Least-Squares.
        Performs a tensor reconstruction on the files by 'globing'
        ``input_files`` and saves the DTI metrics in a directory specified by
        ``out_dir``.

        Parameters
        ----------
        input_files : string
            Path to the input volumes. This path may contain wildcards to
            process multiple inputs at once.
        bvalues_files : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        bvectors_files : string
            Path to the bvectors files. This path may contain wildcards to use
            multiple bvectors files at once.
        mask_files : string
            Path to the input masks. This path may contain wildcards to use
            multiple masks at once. (default: No mask used)
        b0_threshold : float, optional
            Threshold used to find b=0 directions (default 0.0)
        bvecs_tol : float, optional
            Threshold used to check that norm(bvec) = 1 +/- bvecs_tol
            b-vectors are unit vectors (default 0.01)
        save_metrics : variable string, optional
            List of metrics to save.
            Possible values: fa, ga, rgb, md, ad, rd, mode, tensor, evec, eval
            (default [] (all))
        out_dir : string, optional
            Output directory (default input file directory)
        out_tensor : string, optional
            Name of the tensors volume to be saved (default 'tensors.nii.gz')
        out_fa : string, optional
            Name of the fractional anisotropy volume to be saved
            (default 'fa.nii.gz')
        out_ga : string, optional
            Name of the geodesic anisotropy volume to be saved
            (default 'ga.nii.gz')
        out_rgb : string, optional
            Name of the color fa volume to be saved (default 'rgb.nii.gz')
        out_md : string, optional
            Name of the mean diffusivity volume to be saved
            (default 'md.nii.gz')
        out_ad : string, optional
            Name of the axial diffusivity volume to be saved
            (default 'ad.nii.gz')
        out_rd : string, optional
            Name of the radial diffusivity volume to be saved
            (default 'rd.nii.gz')
        out_mode : string, optional
            Name of the mode volume to be saved (default 'mode.nii.gz')
        out_evec : string, optional
            Name of the eigenvectors volume to be saved
            (default 'evecs.nii.gz')
        out_eval : string, optional
            Name of the eigenvalues to be saved (default 'evals.nii.gz')

        References
        ----------
        .. [1] Basser, P.J., Mattiello, J., LeBihan, D., 1994. Estimation of
           the effective self-diffusion tensor from the NMR spin echo. J Magn
           Reson B 103, 247-254.

        .. [2] Basser, P., Pierpaoli, C., 1996. Microstructural and
           physiological features of tissues elucidated by quantitative
           diffusion-tensor MRI.  Journal of Magnetic Resonance 111, 209-219.

        .. [3] Lin-Ching C., Jones D.K., Pierpaoli, C. 2005. RESTORE: Robust
           estimation of tensors by outlier rejection. MRM 53: 1088-1095

        .. [4] hung, SW., Lu, Y., Henry, R.G., 2006. Comparison of bootstrap
           approaches for estimation of uncertainties of DTI parameters.
           NeuroImage 33, 531-541.

        """
        io_it = self.get_io_iterator()

        for dwi, bval, bvec, mask, otensor, ofa, oga, orgb, omd, oad, orad, \
                omode, oevecs, oevals in io_it:

            logging.info('Computing DTI metrics for {0}'.format(dwi))
            data, affine = load_nifti(dwi)

            if mask is not None:
                mask = nib.load(mask).get_data().astype(np.bool)

            tenfit, _ = self.get_fitted_tensor(data, mask, bval, bvec,
                                               b0_threshold, bvecs_tol)

            if not save_metrics:
                save_metrics = ['fa', 'md', 'rd', 'ad', 'ga', 'rgb', 'mode',
                                'evec', 'eval', 'tensor']

            FA = fractional_anisotropy(tenfit.evals)
            FA[np.isnan(FA)] = 0
            FA = np.clip(FA, 0, 1)

            if 'tensor' in save_metrics:
                tensor_vals = lower_triangular(tenfit.quadratic_form)
                correct_order = [0, 1, 3, 2, 4, 5]
                tensor_vals_reordered = tensor_vals[..., correct_order]

                save_nifti(otensor, tensor_vals_reordered.astype(np.float32),
                           affine)

            if 'fa' in save_metrics:
                save_nifti(ofa, FA.astype(np.float32), affine)

            if 'ga' in save_metrics:
                GA = geodesic_anisotropy(tenfit.evals)
                save_nifti(oga, GA.astype(np.float32), affine)

            if 'rgb' in save_metrics:
                RGB = color_fa(FA, tenfit.evecs)
                save_nifti(orgb, np.array(255 * RGB, 'uint8'), affine)

            if 'md' in save_metrics:
                MD = mean_diffusivity(tenfit.evals)
                save_nifti(omd, MD.astype(np.float32), affine)

            if 'ad' in save_metrics:
                AD = axial_diffusivity(tenfit.evals)
                save_nifti(oad, AD.astype(np.float32), affine)

            if 'rd' in save_metrics:
                RD = radial_diffusivity(tenfit.evals)
                save_nifti(orad, RD.astype(np.float32), affine)

            if 'mode' in save_metrics:
                MODE = get_mode(tenfit.quadratic_form)
                save_nifti(omode, MODE.astype(np.float32), affine)

            if 'evec' in save_metrics:
                save_nifti(oevecs, tenfit.evecs.astype(np.float32), affine)

            if 'eval' in save_metrics:
                save_nifti(oevals, tenfit.evals.astype(np.float32), affine)

            dname_ = os.path.dirname(oevals)
            if dname_ == '':
                logging.info('DTI metrics saved in current directory')
            else:
                logging.info(
                        'DTI metrics saved in {0}'.format(dname_))