Ejemplo n.º 1
0
def test_distance_matrix():
    metric = dipysmetric.SumPointwiseEuclideanMetric()

    for dtype in [np.int32, np.int64, np.float32, np.float64]:
        # Compute distances of all tuples spawn by the Cartesian product
        # of `data` with itself.
        data = (np.random.rand(4, 10, 3) * 10).astype(dtype)
        D = dipysmetric.distance_matrix(metric, data)
        assert_equal(D.shape, (len(data), len(data)))
        assert_array_equal(np.diag(D), np.zeros(len(data)))

        if metric.is_order_invariant:
            # Distance matrix should be symmetric
            assert_array_equal(D, D.T)

        for i in range(len(data)):
            for j in range(len(data)):
                assert_equal(D[i, j], dipysmetric.dist(metric, data[i],
                                                       data[j]))

        # Compute distances of all tuples spawn by the Cartesian product
        # of `data` with `data2`.
        data2 = (np.random.rand(3, 10, 3) * 10).astype(dtype)
        D = dipysmetric.distance_matrix(metric, data, data2)
        assert_equal(D.shape, (len(data), len(data2)))

        for i in range(len(data)):
            for j in range(len(data2)):
                assert_equal(D[i, j],
                             dipysmetric.dist(metric, data[i], data2[j]))
Ejemplo n.º 2
0
def mdf(s1, s2):
    """ Computes the MDF (Minimum average Direct-Flip) distance
    [Garyfallidis12]_ between two streamlines.

    Streamlines must have the same number of points.

    Parameters
    ----------
    s1 : 2D array
        A streamline (sequence of N-dimensional points).
    s2 : 2D array
        A streamline (sequence of N-dimensional points).

    Returns
    -------
    double
        Distance between two streamlines.

    References
    ----------
    .. [Garyfallidis12] Garyfallidis E. et al., QuickBundles a method for
                        tractography simplification, Frontiers in Neuroscience,
                        vol 6, no 175, 2012.
    """
    return dist(MinimumAverageDirectFlipMetric(), s1, s2)
Ejemplo n.º 3
0
def mdf(s1, s2):
    """ Computes the MDF (Minimum average Direct-Flip) distance
    [Garyfallidis12]_ between two streamlines.

    Streamlines must have the same number of points.

    Parameters
    ----------
    s1 : 2D array
        A streamline (sequence of N-dimensional points).
    s2 : 2D array
        A streamline (sequence of N-dimensional points).

    Returns
    -------
    double
        Distance between two streamlines.

    References
    ----------
    .. [Garyfallidis12] Garyfallidis E. et al., QuickBundles a method for
                        tractography simplification, Frontiers in Neuroscience,
                        vol 6, no 175, 2012.
    """
    return dist(MinimumAverageDirectFlipMetric(), s1, s2)
Ejemplo n.º 4
0
def test_metric_minimum_average_direct_flip():
    feature = dipysfeature.IdentityFeature()

    class MinimumAverageDirectFlipMetric(dipysmetric.Metric):
        def __init__(self, feature):
            super(MinimumAverageDirectFlipMetric,
                  self).__init__(feature=feature)

        @property
        def is_order_invariant(self):
            return True  # Ordering is handled in the distance computation

        def are_compatible(self, shape1, shape2):
            return shape1[0] == shape2[0]

        def dist(self, v1, v2):
            def average_euclidean(x, y):
                return np.mean(norm(x - y, axis=1))

            dist_direct = average_euclidean(v1, v2)
            dist_flipped = average_euclidean(v1, v2[::-1])
            return min(dist_direct, dist_flipped)

    for metric in [
            MinimumAverageDirectFlipMetric(feature),
            dipysmetric.MinimumAverageDirectFlipMetric(feature)
    ]:

        # Test special cases of the MDF distance.
        assert_equal(metric.dist(s, s), 0.)
        assert_equal(metric.dist(s, s[::-1]), 0.)

        # Translation
        offset = np.array([0.8, 1.3, 5], dtype=dtype)
        assert_almost_equal(metric.dist(s, s + offset), norm(offset), 5)

        # Scaling
        M_scaling = np.diag([1.2, 2.8, 3]).astype(dtype)
        s_mean = np.mean(s, axis=0)
        s_zero_mean = s - s_mean
        s_scaled = np.dot(M_scaling, s_zero_mean.T).T + s_mean
        d = np.mean(norm((np.diag(M_scaling) - 1) * s_zero_mean, axis=1))
        assert_almost_equal(metric.dist(s, s_scaled), d, 5)

        # Rotation
        from dipy.core.geometry import rodrigues_axis_rotation
        rot_axis = np.array([1, 2, 3], dtype=dtype)
        M_rotation = rodrigues_axis_rotation(rot_axis, 60.).astype(dtype)
        s_mean = np.mean(s, axis=0)
        s_zero_mean = s - s_mean
        s_rotated = np.dot(M_rotation, s_zero_mean.T).T + s_mean

        opposite = norm(np.cross(rot_axis, s_zero_mean),
                        axis=1) / norm(rot_axis)
        distances = np.sqrt(2 * opposite**2 *
                            (1 - np.cos(60. * np.pi / 180.))).astype(dtype)
        d = np.mean(distances)
        assert_almost_equal(metric.dist(s, s_rotated), d, 5)

        # All possible pairs
        for s1, s2 in itertools.product(*[streamlines] * 2):
            # Extract features since metric doesn't work
            # directly on streamlines
            f1 = metric.feature.extract(s1)
            f2 = metric.feature.extract(s2)

            # Test method are_compatible
            same_nb_points = f1.shape[0] == f2.shape[0]
            assert_equal(metric.are_compatible(f1.shape, f2.shape),
                         same_nb_points)

            # Test method dist if features are compatible
            if metric.are_compatible(f1.shape, f2.shape):
                distance = metric.dist(f1, f2)
                if np.all(f1 == f2):
                    assert_equal(distance, 0.)

                assert_almost_equal(distance, dipysmetric.dist(metric, s1, s2))
                assert_almost_equal(distance, dipymetric.mdf(s1, s2))
                assert_greater_equal(distance, 0.)

        # This metric type is order invariant
        assert_true(metric.is_order_invariant)
        # All possible pairs
        for s1, s2 in itertools.product(*[streamlines] * 2):
            f1 = metric.feature.extract(s1)
            f2 = metric.feature.extract(s2)

            if not metric.are_compatible(f1.shape, f2.shape):
                continue

            f1_flip = metric.feature.extract(s1[::-1])
            f2_flip = metric.feature.extract(s2[::-1])

            distance = metric.dist(f1, f2)
            assert_almost_equal(metric.dist(f1_flip, f2_flip), distance)

            if not np.all(f1_flip == f2_flip):
                assert_true(np.allclose(metric.dist(f1, f2_flip), distance))
                assert_true(np.allclose(metric.dist(f1_flip, f2), distance))
Ejemplo n.º 5
0
def test_metric_cosine():
    feature = dipysfeature.VectorOfEndpointsFeature()

    class CosineMetric(dipysmetric.Metric):
        def __init__(self, feature):
            super(CosineMetric, self).__init__(feature=feature)

        def are_compatible(self, shape1, shape2):
            # Cosine metric works on vectors.
            return shape1 == shape2 and shape1[0] == 1

        def dist(self, v1, v2):
            # Check if we have null vectors
            if norm(v1) == 0:
                return 0. if norm(v2) == 0 else 1.

            v1_normed = v1.astype(np.float64) / norm(v1.astype(np.float64))
            v2_normed = v2.astype(np.float64) / norm(v2.astype(np.float64))
            cos_theta = np.dot(v1_normed, v2_normed.T)
            # Make sure it's in [-1, 1], i.e. within domain of arccosine
            cos_theta = np.minimum(cos_theta, 1.)
            cos_theta = np.maximum(cos_theta, -1.)
            return np.arccos(cos_theta) / np.pi  # Normalized cosine distance

    for metric in [CosineMetric(feature), dipysmetric.CosineMetric(feature)]:
        # Test special cases of the cosine distance.
        v0 = np.array([[0, 0, 0]], dtype=np.float32)
        v1 = np.array([[1, 2, 3]], dtype=np.float32)
        v2 = np.array([[1, -1. / 2, 0]], dtype=np.float32)
        v3 = np.array([[-1, -2, -3]], dtype=np.float32)

        assert_equal(metric.dist(v0, v0), 0.)  # dot-dot
        assert_equal(metric.dist(v0, v1), 1.)  # dot-line
        assert_equal(metric.dist(v1, v1), 0.)  # collinear
        assert_equal(metric.dist(v1, v2), 0.5)  # orthogonal
        assert_equal(metric.dist(v1, v3), 1.)  # opposite

        # All possible pairs
        for s1, s2 in itertools.product(*[streamlines] * 2):
            # Extract features since metric doesn't
            # work directly on streamlines
            f1 = metric.feature.extract(s1)
            f2 = metric.feature.extract(s2)

            # Test method are_compatible
            are_vectors = f1.shape[0] == 1 and f2.shape[0] == 1
            same_dimension = f1.shape[1] == f2.shape[1]
            assert_equal(metric.are_compatible(f1.shape, f2.shape), are_vectors
                         and same_dimension)

            # Test method dist if features are compatible
            if metric.are_compatible(f1.shape, f2.shape):
                distance = metric.dist(f1, f2)
                if np.all(f1 == f2):
                    assert_almost_equal(distance, 0.)

                assert_almost_equal(distance, dipysmetric.dist(metric, s1, s2))
                assert_greater_equal(distance, 0.)
                assert_less_equal(distance, 1.)

        # This metric type is not order invariant
        assert_false(metric.is_order_invariant)
        # All possible pairs
        for s1, s2 in itertools.product(*[streamlines] * 2):
            f1 = metric.feature.extract(s1)
            f2 = metric.feature.extract(s2)

            if not metric.are_compatible(f1.shape, f2.shape):
                continue

            f1_flip = metric.feature.extract(s1[::-1])
            f2_flip = metric.feature.extract(s2[::-1])

            distance = metric.dist(f1, f2)
            assert_almost_equal(metric.dist(f1_flip, f2_flip), distance)

            if not np.all(f1_flip == f2_flip):
                assert_false(metric.dist(f1, f2_flip) == distance)
                assert_false(metric.dist(f1_flip, f2) == distance)