Ejemplo n.º 1
0
    def run(self,
            input_files,
            cluster=False,
            cluster_thr=15.,
            random_colors=False,
            length_gt=0,
            length_lt=1000,
            clusters_gt=0,
            clusters_lt=10**8,
            native_coords=False,
            stealth=False,
            emergency_header='icbm_2009a',
            bg_color=(0, 0, 0),
            disable_order_transparency=False,
            buan=False,
            buan_thr=0.5,
            buan_highlight=(1, 0, 0),
            out_dir='',
            out_stealth_png='tmp.png'):
        """ Interactive medical visualization - Invert the Horizon!

        Interact with any number of .trk, .tck or .dpy tractograms and anatomy
        files .nii or .nii.gz. Cluster streamlines on loading.

        Parameters
        ----------
        input_files : variable string
        cluster : bool, optional
            Enable QuickBundlesX clustering.
        cluster_thr : float, optional
            Distance threshold used for clustering. Default value 15.0 for
            small animal brains you may need to use something smaller such
            as 2.0. The distance is in mm. For this parameter to be active
            ``cluster`` should be enabled.
        random_colors : bool, optional
            Given multiple tractograms have been included then each tractogram
            will be shown with different color.
        length_gt : float, optional
            Clusters with average length greater than ``length_gt`` amount
            in mm will be shown.
        length_lt : float, optional
            Clusters with average length less than ``length_lt`` amount in
            mm will be shown.
        clusters_gt : int, optional
            Clusters with size greater than ``clusters_gt`` will be shown.
        clusters_lt : int, optional
            Clusters with size less than ``clusters_gt`` will be shown.
        native_coords : bool, optional
            Show results in native coordinates.
        stealth : bool, optional
            Do not use interactive mode just save figure.
        emergency_header : str, optional
            If no anatomy reference is provided an emergency header is
            provided. Current options 'icbm_2009a' and 'icbm_2009c'.
        bg_color : variable float, optional
            Define the background color of the scene. Colors can be defined
            with 1 or 3 values and should be between [0-1].
        disable_order_transparency : bool, optional
            Use depth peeling to sort transparent objects.
            If True also enables anti-aliasing.
        buan : bool, optional
            Enables BUAN framework visualization.
        buan_thr : float, optional
            Uses the threshold value to highlight segments on the
            bundle which have pvalues less than this threshold.
        buan_highlight : variable float, optional
            Define the bundle highlight area color. Colors can be defined
            with 1 or 3 values and should be between [0-1].
            For example, a value of (1, 0, 0) would mean the red color.
        out_dir : str, optional
            Output directory. (default current directory)
        out_stealth_png : str, optional
            Filename of saved picture.

        References
        ----------
        .. [Horizon_ISMRM19] Garyfallidis E., M-A. Cote, B.Q. Chandio,
            S. Fadnavis, J. Guaje, R. Aggarwal, E. St-Onge, K.S. Juneja,
            S. Koudoro, D. Reagan, DIPY Horizon: fast, modular, unified and
            adaptive visualization, Proceedings of: International Society of
            Magnetic Resonance in Medicine (ISMRM), Montreal, Canada, 2019.
        """
        verbose = True
        tractograms = []
        images = []
        pams = []
        numpy_files = []
        interactive = not stealth
        world_coords = not native_coords
        bundle_colors = None

        mni_2009a = {}
        mni_2009a['affine'] = np.array([[1., 0., 0.,
                                         -98.], [0., 1., 0., -134.],
                                        [0., 0., 1., -72.], [0., 0., 0., 1.]])
        mni_2009a['dims'] = (197, 233, 189)
        mni_2009a['vox_size'] = (1., 1., 1.)
        mni_2009a['vox_space'] = 'RAS'

        mni_2009c = {}
        mni_2009c['affine'] = np.array([[1., 0., 0.,
                                         -96.], [0., 1., 0., -132.],
                                        [0., 0., 1., -78.], [0., 0., 0., 1.]])
        mni_2009c['dims'] = (193, 229, 193)
        mni_2009c['vox_size'] = (1., 1., 1.)
        mni_2009c['vox_space'] = 'RAS'

        if emergency_header == 'icbm_2009a':
            hdr = mni_2009c
        else:
            hdr = mni_2009c
        emergency_ref = create_nifti_header(hdr['affine'], hdr['dims'],
                                            hdr['vox_size'])

        io_it = self.get_io_iterator()

        for input_output in io_it:

            fname = input_output[0]

            if verbose:
                print('Loading file ...')
                print(fname)
                print('\n')

            fl = fname.lower()
            ends = fl.endswith

            if ends('.trk'):

                sft = load_tractogram(fname, 'same', bbox_valid_check=False)
                tractograms.append(sft)

            if ends('.dpy') or ends('.tck'):
                sft = load_tractogram(fname, emergency_ref)
                tractograms.append(sft)

            if ends('.nii.gz') or ends('.nii'):

                data, affine = load_nifti(fname)
                images.append((data, affine))
                if verbose:
                    print('Affine to RAS')
                    np.set_printoptions(3, suppress=True)
                    print(affine)
                    np.set_printoptions()

            if ends(".pam5"):

                pam = load_peaks(fname)
                pams.append(pam)

                if verbose:
                    print('Peak_dirs shape')
                    print(pam.peak_dirs.shape)

            if ends(".npy"):

                data = np.load(fname)
                numpy_files.append(data)

                if verbose:
                    print('numpy array length')
                    print(len(data))

        if buan:
            bundle_colors = []

            for i in range(len(numpy_files)):

                n = len(numpy_files[i])
                pvalues = numpy_files[i]
                bundle = tractograms[i].streamlines

                indx = assignment_map(bundle, bundle, n)
                ind = np.array(indx)

                nb_lines = len(bundle)
                lines_range = range(nb_lines)
                points_per_line = [len(bundle[i]) for i in lines_range]
                points_per_line = np.array(points_per_line, np.intp)

                cols_arr = line_colors(bundle)
                colors_mapper = np.repeat(lines_range, points_per_line, axis=0)
                vtk_colors = numpy_to_vtk_colors(255 * cols_arr[colors_mapper])
                colors = numpy_support.vtk_to_numpy(vtk_colors)
                colors = (colors - np.min(colors)) / np.ptp(colors)

                for i in range(n):

                    if pvalues[i] < buan_thr:
                        colors[ind == i] = buan_highlight

                bundle_colors.append(colors)

        if len(bg_color) == 1:
            bg_color *= 3
        elif len(bg_color) != 3:
            raise ValueError('You need 3 values to set up backgound color. '
                             'e.g --bg_color 0.5 0.5 0.5')

        order_transparent = not disable_order_transparency
        horizon(tractograms=tractograms,
                images=images,
                pams=pams,
                cluster=cluster,
                cluster_thr=cluster_thr,
                random_colors=random_colors,
                bg_color=bg_color,
                order_transparent=order_transparent,
                length_gt=length_gt,
                length_lt=length_lt,
                clusters_gt=clusters_gt,
                clusters_lt=clusters_lt,
                world_coords=world_coords,
                interactive=interactive,
                buan=buan,
                buan_colors=bundle_colors,
                out_png=pjoin(out_dir, out_stealth_png))
Ejemplo n.º 2
0
def buan_bundle_profiles(model_bundle_folder, bundle_folder,
                         orig_bundle_folder, metric_folder, group_id, subject,
                         no_disks=100, out_dir=''):
    """
    Applies statistical analysis on bundles and saves the results
    in a directory specified by ``out_dir``.

    Parameters
    ----------
    model_bundle_folder : string
        Path to the input model bundle files. This path may contain
        wildcards to process multiple inputs at once.
    bundle_folder : string
        Path to the input bundle files in common space. This path may
        contain wildcards to process multiple inputs at once.
    orig_folder : string
        Path to the input bundle files in native space. This path may
        contain wildcards to process multiple inputs at once.
    metric_folder : string
        Path to the input dti metric or/and peak files. It will be used as
        metric for statistical analysis of bundles.
    group_id : integer
        what group subject belongs to either 0 for control or 1 for patient
    subject : string
        subject id e.g. 10001
    no_disks : integer, optional
        Number of disks used for dividing bundle into disks. (Default 100)
    out_dir : string, optional
        Output directory (default input file directory)

    References
    ----------
    .. [Chandio19] Chandio, B.Q., S. Koudoro, D. Reagan, J. Harezlak,
    E. Garyfallidis, Bundle Analytics: a computational and statistical
    analyses framework for tractometric studies, Proceedings of:
    International Society of Magnetic Resonance in Medicine (ISMRM),
    Montreal, Canada, 2019.

    """

    t = time()

    dt = dict()

    mb = glob(os.path.join(model_bundle_folder, "*.trk"))
    print(mb)

    mb.sort()

    bd = glob(os.path.join(bundle_folder, "*.trk"))

    bd.sort()
    print(bd)
    org_bd = glob(os.path.join(orig_bundle_folder, "*.trk"))
    org_bd.sort()
    print(org_bd)
    n = len(org_bd)
    n = len(mb)

    for io in range(n):

        mbundles = load_tractogram(mb[io], reference='same',
                                   bbox_valid_check=False).streamlines
        bundles = load_tractogram(bd[io], reference='same',
                                  bbox_valid_check=False).streamlines
        orig_bundles = load_tractogram(org_bd[io], reference='same',
                                       bbox_valid_check=False).streamlines

        if len(orig_bundles) > 5:

            indx = assignment_map(bundles, mbundles, no_disks)
            ind = np.array(indx)

            metric_files_names_dti = glob(os.path.join(metric_folder,
                                                       "*.nii.gz"))

            metric_files_names_csa = glob(os.path.join(metric_folder,
                                                       "*.pam5"))

            _, affine = load_nifti(metric_files_names_dti[0])

            affine_r = np.linalg.inv(affine)
            transformed_orig_bundles = transform_streamlines(orig_bundles,
                                                             affine_r)

            for mn in range(len(metric_files_names_dti)):

                ab = os.path.split(metric_files_names_dti[mn])
                metric_name = ab[1]

                fm = metric_name[:-7]
                bm = os.path.split(mb[io])[1][:-4]

                logging.info("bm = " + bm)

                dt = dict()

                logging.info("metric = " + metric_files_names_dti[mn])

                metric, _ = load_nifti(metric_files_names_dti[mn])

                anatomical_measures(transformed_orig_bundles, metric, dt, fm,
                                    bm, subject, group_id, ind, out_dir)

            for mn in range(len(metric_files_names_csa)):
                ab = os.path.split(metric_files_names_csa[mn])
                metric_name = ab[1]

                fm = metric_name[:-5]
                bm = os.path.split(mb[io])[1][:-4]

                logging.info("bm = " + bm)
                logging.info("metric = " + metric_files_names_csa[mn])
                dt = dict()
                metric = load_peaks(metric_files_names_csa[mn])

                peak_values(transformed_orig_bundles, metric, dt, fm, bm,
                            subject, group_id, ind, out_dir)

    print("total time taken in minutes = ", (-t + time())/60)
Ejemplo n.º 3
0
def buan_bundle_profiles(model_bundle_folder,
                         bundle_folder,
                         orig_bundle_folder,
                         metric_folder,
                         group_id,
                         subject,
                         no_disks=100,
                         out_dir=''):
    """
    Applies statistical analysis on bundles and saves the results
    in a directory specified by ``out_dir``.

    Parameters
    ----------
    model_bundle_folder : string
        Path to the input model bundle files. This path may contain
        wildcards to process multiple inputs at once.
    bundle_folder : string
        Path to the input bundle files in common space. This path may
        contain wildcards to process multiple inputs at once.
    orig_folder : string
        Path to the input bundle files in native space. This path may
        contain wildcards to process multiple inputs at once.
    metric_folder : string
        Path to the input dti metric or/and peak files. It will be used as
        metric for statistical analysis of bundles.
    group_id : integer
        what group subject belongs to either 0 for control or 1 for patient.
    subject : string
        subject id e.g. 10001.
    no_disks : integer, optional
        Number of disks used for dividing bundle into disks.
    out_dir : string, optional
        Output directory. (default current directory)

    References
    ----------
    .. [Chandio2020] Chandio, B.Q., Risacher, S.L., Pestilli, F., Bullock, D.,
    Yeh, FC., Koudoro, S., Rokem, A., Harezlak, J., and Garyfallidis, E.
    Bundle analytics, a computational framework for investigating the
    shapes and profiles of brain pathways across populations.
    Sci Rep 10, 17149 (2020)

    """

    t = time()

    dt = dict()

    mb = glob(os.path.join(model_bundle_folder, "*.trk"))
    print(mb)

    mb.sort()

    bd = glob(os.path.join(bundle_folder, "*.trk"))

    bd.sort()
    print(bd)
    org_bd = glob(os.path.join(orig_bundle_folder, "*.trk"))
    org_bd.sort()
    print(org_bd)
    n = len(org_bd)
    n = len(mb)

    for io in range(n):

        mbundles = load_tractogram(mb[io],
                                   reference='same',
                                   bbox_valid_check=False).streamlines
        bundles = load_tractogram(bd[io],
                                  reference='same',
                                  bbox_valid_check=False).streamlines
        orig_bundles = load_tractogram(org_bd[io],
                                       reference='same',
                                       bbox_valid_check=False).streamlines

        if len(orig_bundles) > 5:

            indx = assignment_map(bundles, mbundles, no_disks)
            ind = np.array(indx)

            metric_files_names_dti = glob(
                os.path.join(metric_folder, "*.nii.gz"))

            metric_files_names_csa = glob(os.path.join(metric_folder,
                                                       "*.pam5"))

            _, affine = load_nifti(metric_files_names_dti[0])

            affine_r = np.linalg.inv(affine)
            transformed_orig_bundles = transform_streamlines(
                orig_bundles, affine_r)

            for mn in range(len(metric_files_names_dti)):

                ab = os.path.split(metric_files_names_dti[mn])
                metric_name = ab[1]

                fm = metric_name[:-7]
                bm = os.path.split(mb[io])[1][:-4]

                logging.info("bm = " + bm)

                dt = dict()

                logging.info("metric = " + metric_files_names_dti[mn])

                metric, _ = load_nifti(metric_files_names_dti[mn])

                anatomical_measures(transformed_orig_bundles, metric, dt, fm,
                                    bm, subject, group_id, ind, out_dir)

            for mn in range(len(metric_files_names_csa)):
                ab = os.path.split(metric_files_names_csa[mn])
                metric_name = ab[1]

                fm = metric_name[:-5]
                bm = os.path.split(mb[io])[1][:-4]

                logging.info("bm = " + bm)
                logging.info("metric = " + metric_files_names_csa[mn])
                dt = dict()
                metric = load_peaks(metric_files_names_csa[mn])

                peak_values(transformed_orig_bundles, metric, dt, fm, bm,
                            subject, group_id, ind, out_dir)

    print("total time taken in minutes = ", (-t + time()) / 60)
Ejemplo n.º 4
0
    window.show(scene)

"""
.. figure:: af_l_before_assignment_maps.png
   :align: center

   AF_L before assignment maps
"""


"""
Creating 100 bundle assignment maps on AF_L using BUAN [Chandio2020]_
"""

n = 100
indx = assignment_map(model_af_l, model_af_l, n)
indx = np.array(indx)

colors = [np.random.rand(3) for si in range(n)]

disks_color = []
for i in range(len(indx)):
    disks_color.append(tuple(colors[indx[i]]))

"""
let's visualize Arcuate Fasiculus Left (AF_L) bundle after assignment maps
"""

interactive = False

scene = window.Scene()