Ejemplo n.º 1
0
def test_rigid_real_bundles():

    bundle_initial = fornix_streamlines()[:20]
    bundle, shift = center_streamlines(bundle_initial)

    mat = compose_matrix44([0, 0, 20, 45., 0, 0])

    bundle2 = transform_streamlines(bundle, mat)

    bundle_sum_distance = BundleSumDistanceMatrixMetric()
    srr = StreamlineLinearRegistration(bundle_sum_distance,
                                       x0=np.zeros(6),
                                       method='Powell')
    new_bundle2 = srr.optimize(bundle, bundle2).transform(bundle2)

    evaluate_convergence(bundle, new_bundle2)

    bundle_min_distance = BundleMinDistanceMatrixMetric()
    srr = StreamlineLinearRegistration(bundle_min_distance,
                                       x0=np.zeros(6),
                                       method='Powell')
    new_bundle2 = srr.optimize(bundle, bundle2).transform(bundle2)

    evaluate_convergence(bundle, new_bundle2)

    assert_raises(ValueError, StreamlineLinearRegistration, method='Whatever')
Ejemplo n.º 2
0
def test_rigid_real_bundles():

    bundle_initial = fornix_streamlines()[:20]
    bundle, shift = center_streamlines(bundle_initial)

    mat = compose_matrix44([0, 0, 20, 45., 0, 0])

    bundle2 = transform_streamlines(bundle, mat)

    bundle_sum_distance = BundleSumDistanceMatrixMetric()
    srr = StreamlineLinearRegistration(bundle_sum_distance,
                                       x0=np.zeros(6),
                                       method='Powell')
    new_bundle2 = srr.optimize(bundle, bundle2).transform(bundle2)

    evaluate_convergence(bundle, new_bundle2)

    bundle_min_distance = BundleMinDistanceMatrixMetric()
    srr = StreamlineLinearRegistration(bundle_min_distance,
                                       x0=np.zeros(6),
                                       method='Powell')
    new_bundle2 = srr.optimize(bundle, bundle2).transform(bundle2)

    evaluate_convergence(bundle, new_bundle2)

    assert_raises(ValueError, StreamlineLinearRegistration, method='Whatever')
Ejemplo n.º 3
0
def test_rigid_partial_real_bundles():

    static = fornix_streamlines()[:20]
    moving = fornix_streamlines()[20:40]
    static_center, shift = center_streamlines(static)
    moving_center, shift2 = center_streamlines(moving)

    print(shift2)
    mat = compose_matrix(translate=np.array([0, 0, 0.]),
                         angles=np.deg2rad([40, 0, 0.]))
    moved = transform_streamlines(moving_center, mat)

    srr = StreamlineLinearRegistration()

    srm = srr.optimize(static_center, moved)
    print(srm.fopt)
    print(srm.iterations)
    print(srm.funcs)

    moving_back = srm.transform(moved)
    print(srm.matrix)

    static_center = set_number_of_points(static_center, 100)
    moving_center = set_number_of_points(moving_back, 100)

    vol = np.zeros((100, 100, 100))
    spts = np.concatenate(static_center, axis=0)
    spts = np.round(spts).astype(np.int) + np.array([50, 50, 50])

    mpts = np.concatenate(moving_center, axis=0)
    mpts = np.round(mpts).astype(np.int) + np.array([50, 50, 50])

    for index in spts:
        i, j, k = index
        vol[i, j, k] = 1

    vol2 = np.zeros((100, 100, 100))
    for index in mpts:
        i, j, k = index
        vol2[i, j, k] = 1

    overlap = np.sum(np.logical_and(vol, vol2)) / float(np.sum(vol2))

    assert_equal(overlap * 100 > 40, True)
Ejemplo n.º 4
0
def test_rigid_partial_real_bundles():

    static = fornix_streamlines()[:20]
    moving = fornix_streamlines()[20:40]
    static_center, shift = center_streamlines(static)
    moving_center, shift2 = center_streamlines(moving)

    print(shift2)
    mat = compose_matrix(translate=np.array([0, 0, 0.]),
                         angles=np.deg2rad([40, 0, 0.]))
    moved = transform_streamlines(moving_center, mat)

    srr = StreamlineLinearRegistration()

    srm = srr.optimize(static_center, moved)
    print(srm.fopt)
    print(srm.iterations)
    print(srm.funcs)

    moving_back = srm.transform(moved)
    print(srm.matrix)

    static_center = set_number_of_points(static_center, 100)
    moving_center = set_number_of_points(moving_back, 100)

    vol = np.zeros((100, 100, 100))
    spts = np.concatenate(static_center, axis=0)
    spts = np.round(spts).astype(np.int) + np.array([50, 50, 50])

    mpts = np.concatenate(moving_center, axis=0)
    mpts = np.round(mpts).astype(np.int) + np.array([50, 50, 50])

    for index in spts:
        i, j, k = index
        vol[i, j, k] = 1

    vol2 = np.zeros((100, 100, 100))
    for index in mpts:
        i, j, k = index
        vol2[i, j, k] = 1

    overlap = np.sum(np.logical_and(vol, vol2)) / float(np.sum(vol2))

    assert_equal(overlap * 100 > 40, True)
Ejemplo n.º 5
0
def test_stream_rigid():

    static = fornix_streamlines()[:20]
    moving = fornix_streamlines()[20:40]
    center_streamlines(static)

    mat = compose_matrix44([0, 0, 0, 0, 40, 0])
    moving = transform_streamlines(moving, mat)

    srr = StreamlineLinearRegistration()
    sr_params = srr.optimize(static, moving)
    moved = transform_streamlines(moving, sr_params.matrix)

    srr = StreamlineLinearRegistration(verbose=True)
    srm = srr.optimize(static, moving)
    moved2 = transform_streamlines(moving, srm.matrix)
    moved3 = srm.transform(moving)

    assert_array_almost_equal(moved[0], moved2[0], decimal=3)
    assert_array_almost_equal(moved2[0], moved3[0], decimal=3)
Ejemplo n.º 6
0
def test_stream_rigid():

    static = fornix_streamlines()[:20]
    moving = fornix_streamlines()[20:40]
    center_streamlines(static)

    mat = compose_matrix44([0, 0, 0, 0, 40, 0])
    moving = transform_streamlines(moving, mat)

    srr = StreamlineLinearRegistration()
    sr_params = srr.optimize(static, moving)
    moved = transform_streamlines(moving, sr_params.matrix)

    srr = StreamlineLinearRegistration(verbose=True)
    srm = srr.optimize(static, moving)
    moved2 = transform_streamlines(moving, srm.matrix)
    moved3 = srm.transform(moving)

    assert_array_almost_equal(moved[0], moved2[0], decimal=3)
    assert_array_almost_equal(moved2[0], moved3[0], decimal=3)
Ejemplo n.º 7
0
def test_center_and_transform():
    A = np.array([[1, 2, 3], [1, 2, 3.]])
    streamlines = [A for _ in range(10)]
    streamlines2, center = center_streamlines(streamlines)
    B = np.zeros((2, 3))
    assert_array_equal(streamlines2[0], B)
    assert_array_equal(center, A[0])

    affine = np.eye(4)
    affine[0, 0] = 2
    affine[:3, -1] = -np.array([2, 1, 1]) * center
    streamlines3 = transform_streamlines(streamlines, affine)
    assert_array_equal(streamlines3[0], B)
Ejemplo n.º 8
0
def test_center_and_transform():
    A = np.array([[1, 2, 3], [1, 2, 3.]])
    streamlines = [A for i in range(10)]
    streamlines2, center = center_streamlines(streamlines)
    B = np.zeros((2, 3))
    assert_array_equal(streamlines2[0], B)
    assert_array_equal(center, A[0])

    affine = np.eye(4)
    affine[0, 0] = 2
    affine[:3, -1] = - np.array([2, 1, 1]) * center
    streamlines3 = transform_streamlines(streamlines, affine)
    assert_array_equal(streamlines3[0], B)
Ejemplo n.º 9
0
def test_rigid_parallel_lines():

    bundle_initial = simulated_bundle()
    bundle, shift = center_streamlines(bundle_initial)
    mat = compose_matrix44([20, 0, 10, 0, 40, 0])

    bundle2 = transform_streamlines(bundle, mat)

    bundle_sum_distance = BundleSumDistanceMatrixMetric()
    options = {'maxcor': 100, 'ftol': 1e-9, 'gtol': 1e-16, 'eps': 1e-3}
    srr = StreamlineLinearRegistration(metric=bundle_sum_distance,
                                       x0=np.zeros(6),
                                       method='L-BFGS-B',
                                       bounds=None,
                                       options=options)

    new_bundle2 = srr.optimize(bundle, bundle2).transform(bundle2)
    evaluate_convergence(bundle, new_bundle2)
Ejemplo n.º 10
0
def test_rigid_parallel_lines():

    bundle_initial = simulated_bundle()
    bundle, shift = center_streamlines(bundle_initial)
    mat = compose_matrix44([20, 0, 10, 0, 40, 0])

    bundle2 = transform_streamlines(bundle, mat)

    bundle_sum_distance = BundleSumDistanceMatrixMetric()
    options = {'maxcor': 100, 'ftol': 1e-9, 'gtol': 1e-16, 'eps': 1e-3}
    srr = StreamlineLinearRegistration(metric=bundle_sum_distance,
                                       x0=np.zeros(6),
                                       method='L-BFGS-B',
                                       bounds=None,
                                       options=options)

    new_bundle2 = srr.optimize(bundle, bundle2).transform(bundle2)
    evaluate_convergence(bundle, new_bundle2)
Ejemplo n.º 11
0
def test_affine_real_bundles():

    bundle_initial = fornix_streamlines()
    bundle_initial, shift = center_streamlines(bundle_initial)
    bundle = bundle_initial[:20]
    xgold = [0, 4, 2, 0, 10, 10, 1.2, 1.1, 1., 0., 0.2, 0.]
    mat = compose_matrix44(xgold)
    bundle2 = transform_streamlines(bundle_initial[:20], mat)

    x0 = np.array([0, 0, 0, 0, 0, 0, 1., 1., 1., 0, 0, 0])

    x = 25

    bounds = [(-x, x), (-x, x), (-x, x),
              (-x, x), (-x, x), (-x, x),
              (0.1, 1.5), (0.1, 1.5), (0.1, 1.5),
              (-1, 1), (-1, 1), (-1, 1)]

    options = {'maxcor': 10, 'ftol': 1e-7, 'gtol': 1e-5, 'eps': 1e-8}

    metric = BundleMinDistanceMatrixMetric()

    slr = StreamlineLinearRegistration(metric=metric,
                                       x0=x0,
                                       method='L-BFGS-B',
                                       bounds=bounds,
                                       verbose=True,
                                       options=options)
    slm = slr.optimize(bundle, bundle2)

    new_bundle2 = slm.transform(bundle2)

    slr2 = StreamlineLinearRegistration(metric=metric,
                                        x0=x0,
                                        method='Powell',
                                        bounds=None,
                                        verbose=True,
                                        options=None)

    slm2 = slr2.optimize(bundle, new_bundle2)

    new_bundle2 = slm2.transform(new_bundle2)

    evaluate_convergence(bundle, new_bundle2)
Ejemplo n.º 12
0
def test_similarity_real_bundles():

    bundle_initial = fornix_streamlines()
    bundle_initial, shift = center_streamlines(bundle_initial)
    bundle = bundle_initial[:20]
    xgold = [0, 0, 10, 0, 0, 0, 1.5]
    mat = compose_matrix44(xgold)
    bundle2 = transform_streamlines(bundle_initial[:20], mat)

    metric = BundleMinDistanceMatrixMetric()
    x0 = np.array([0, 0, 0, 0, 0, 0, 1], 'f8')

    slr = StreamlineLinearRegistration(metric=metric,
                                       x0=x0,
                                       method='Powell',
                                       bounds=None,
                                       verbose=False)

    slm = slr.optimize(bundle, bundle2)
    new_bundle2 = slm.transform(bundle2)
    evaluate_convergence(bundle, new_bundle2)
Ejemplo n.º 13
0
def test_similarity_real_bundles():

    bundle_initial = fornix_streamlines()
    bundle_initial, shift = center_streamlines(bundle_initial)
    bundle = bundle_initial[:20]
    xgold = [0, 0, 10, 0, 0, 0, 1.5]
    mat = compose_matrix44(xgold)
    bundle2 = transform_streamlines(bundle_initial[:20], mat)

    metric = BundleMinDistanceMatrixMetric()
    x0 = np.array([0, 0, 0, 0, 0, 0, 1], 'f8')

    slr = StreamlineLinearRegistration(metric=metric,
                                       x0=x0,
                                       method='Powell',
                                       bounds=None,
                                       verbose=False)

    slm = slr.optimize(bundle, bundle2)
    new_bundle2 = slm.transform(bundle2)
    evaluate_convergence(bundle, new_bundle2)
Ejemplo n.º 14
0
    def optimize(self, static, moving, mat=None):
        """ Find the minimum of the provided metric.

        Parameters
        ----------
        static : streamlines
            Reference or fixed set of streamlines.
        moving : streamlines
            Moving set of streamlines.
        mat : array
            Transformation (4, 4) matrix to start the registration. ``mat``
            is applied to moving. Default value None which means that initial
            transformation will be generated by shifting the centers of moving
            and static sets of streamlines to the origin.

        Returns
        -------
        map : StreamlineRegistrationMap

        """

        msg = 'need to have the same number of points. Use '
        msg += 'set_number_of_points from dipy.tracking.streamline'

        if not np.all(np.array(list(map(len, static))) == static[0].shape[0]):
            raise ValueError('Static streamlines ' + msg)

        if not np.all(np.array(list(map(len, moving))) == moving[0].shape[0]):
            raise ValueError('Moving streamlines ' + msg)

        if not np.all(np.array(list(map(len, moving))) == static[0].shape[0]):
            raise ValueError('Static and moving streamlines ' + msg)

        if mat is None:
            static_centered, static_shift = center_streamlines(static)
            moving_centered, moving_shift = center_streamlines(moving)
            static_mat = compose_matrix44([static_shift[0], static_shift[1],
                                           static_shift[2], 0, 0, 0])

            moving_mat = compose_matrix44([-moving_shift[0], -moving_shift[1],
                                           -moving_shift[2], 0, 0, 0])
        else:
            static_centered = static
            moving_centered = transform_streamlines(moving, mat)
            static_mat = np.eye(4)
            moving_mat = mat

        self.metric.setup(static_centered, moving_centered)

        distance = self.metric.distance

        if self.method == 'Powell':

            if self.options is None:
                self.options = {'xtol': 1e-6, 'ftol': 1e-6, 'maxiter': 1e6}

            opt = Optimizer(distance, self.x0.tolist(),
                            method=self.method, options=self.options,
                            evolution=self.evolution)

        if self.method == 'L-BFGS-B':

            if self.options is None:
                self.options = {'maxcor': 10, 'ftol': 1e-7,
                                'gtol': 1e-5, 'eps': 1e-8,
                                'maxiter': 100}

            opt = Optimizer(distance, self.x0.tolist(),
                            method=self.method,
                            bounds=self.bounds, options=self.options,
                            evolution=self.evolution)

        if self.verbose:
            opt.print_summary()

        opt_mat = compose_matrix44(opt.xopt)

        mat = compose_transformations(moving_mat, opt_mat, static_mat)

        mat_history = []

        if opt.evolution is not None:
            for vecs in opt.evolution:
                mat_history.append(
                    compose_transformations(moving_mat,
                                            compose_matrix44(vecs),
                                            static_mat))

        srm = StreamlineRegistrationMap(mat, opt.xopt, opt.fopt,
                                        mat_history, opt.nfev, opt.nit)
        del opt
        return srm
Ejemplo n.º 15
0
    def optimize(self, static, moving, mat=None):
        """ Find the minimum of the provided metric.

        Parameters
        ----------
        static : streamlines
            Reference or fixed set of streamlines.
        moving : streamlines
            Moving set of streamlines.
        mat : array
            Transformation (4, 4) matrix to start the registration. ``mat``
            is applied to moving. Default value None which means that initial
            transformation will be generated by shifting the centers of moving
            and static sets of streamlines to the origin.

        Returns
        -------
        map : StreamlineRegistrationMap

        """

        msg = 'need to have the same number of points. Use '
        msg += 'set_number_of_points from dipy.tracking.streamline'

        if not np.all(np.array(list(map(len, static))) == static[0].shape[0]):
            raise ValueError('Static streamlines ' + msg)

        if not np.all(np.array(list(map(len, moving))) == moving[0].shape[0]):
            raise ValueError('Moving streamlines ' + msg)

        if not np.all(np.array(list(map(len, moving))) == static[0].shape[0]):
            raise ValueError('Static and moving streamlines ' + msg)

        if mat is None:
            static_centered, static_shift = center_streamlines(static)
            moving_centered, moving_shift = center_streamlines(moving)
            static_mat = compose_matrix44(
                [static_shift[0], static_shift[1], static_shift[2], 0, 0, 0])

            moving_mat = compose_matrix44([
                -moving_shift[0], -moving_shift[1], -moving_shift[2], 0, 0, 0
            ])
        else:
            static_centered = static
            moving_centered = transform_streamlines(moving, mat)
            static_mat = np.eye(4)
            moving_mat = mat

        self.metric.setup(static_centered, moving_centered)

        distance = self.metric.distance

        if self.method == 'Powell':

            if self.options is None:
                self.options = {'xtol': 1e-6, 'ftol': 1e-6, 'maxiter': 1e6}

            opt = Optimizer(distance,
                            self.x0.tolist(),
                            method=self.method,
                            options=self.options,
                            evolution=self.evolution)

        if self.method == 'L-BFGS-B':

            if self.options is None:
                self.options = {
                    'maxcor': 10,
                    'ftol': 1e-7,
                    'gtol': 1e-5,
                    'eps': 1e-8,
                    'maxiter': 100
                }

            opt = Optimizer(distance,
                            self.x0.tolist(),
                            method=self.method,
                            bounds=self.bounds,
                            options=self.options,
                            evolution=self.evolution)
        if self.verbose:
            opt.print_summary()

        opt_mat = compose_matrix44(opt.xopt)

        mat = compose_transformations(moving_mat, opt_mat, static_mat)

        mat_history = []

        if opt.evolution is not None:
            for vecs in opt.evolution:
                mat_history.append(
                    compose_transformations(moving_mat, compose_matrix44(vecs),
                                            static_mat))

        srm = StreamlineRegistrationMap(mat, opt.xopt, opt.fopt, mat_history,
                                        opt.nfev, opt.nit)
        del opt
        return srm
Ejemplo n.º 16
0
def test_bundle_maps():
    renderer = window.renderer()
    bundle = fornix_streamlines()
    bundle, shift = center_streamlines(bundle)

    mat = np.array([[1, 0, 0, 100],
                    [0, 1, 0, 100],
                    [0, 0, 1, 100],
                    [0, 0, 0, 1.]])

    bundle = transform_streamlines(bundle, mat)

    # metric = np.random.rand(*(200, 200, 200))
    metric = 100 * np.ones((200, 200, 200))

    # add lower values
    metric[100, :, :] = 100 * 0.5

    # create a nice orange-red colormap
    lut = actor.colormap_lookup_table(scale_range=(0., 100.),
                                      hue_range=(0., 0.1),
                                      saturation_range=(1, 1),
                                      value_range=(1., 1))

    line = actor.line(bundle, metric, linewidth=0.1, lookup_colormap=lut)
    window.add(renderer, line)
    window.add(renderer, actor.scalar_bar(lut, ' '))

    report = window.analyze_renderer(renderer)

    npt.assert_almost_equal(report.actors, 1)
    # window.show(renderer)

    renderer.clear()

    nb_points = np.sum([len(b) for b in bundle])
    values = 100 * np.random.rand(nb_points)
    # values[:nb_points/2] = 0

    line = actor.streamtube(bundle, values, linewidth=0.1, lookup_colormap=lut)
    renderer.add(line)
    # window.show(renderer)

    report = window.analyze_renderer(renderer)
    npt.assert_equal(report.actors_classnames[0], 'vtkLODActor')

    renderer.clear()

    colors = np.random.rand(nb_points, 3)
    # values[:nb_points/2] = 0

    line = actor.line(bundle, colors, linewidth=2)
    renderer.add(line)
    # window.show(renderer)

    report = window.analyze_renderer(renderer)
    npt.assert_equal(report.actors_classnames[0], 'vtkLODActor')
    # window.show(renderer)

    arr = window.snapshot(renderer)
    report2 = window.analyze_snapshot(arr)
    npt.assert_equal(report2.objects, 1)

    # try other input options for colors
    renderer.clear()
    actor.line(bundle, (1., 0.5, 0))
    actor.line(bundle, np.arange(len(bundle)))
    actor.line(bundle)
    colors = [np.random.rand(*b.shape) for b in bundle]
    actor.line(bundle, colors=colors)
Ejemplo n.º 17
0
def test_bundle_maps():
    renderer = window.renderer()
    bundle = fornix_streamlines()
    bundle, shift = center_streamlines(bundle)

    mat = np.array([[1, 0, 0, 100],
                    [0, 1, 0, 100],
                    [0, 0, 1, 100],
                    [0, 0, 0, 1.]])

    bundle = transform_streamlines(bundle, mat)

    # metric = np.random.rand(*(200, 200, 200))
    metric = 100 * np.ones((200, 200, 200))

    # add lower values
    metric[100, :, :] = 100 * 0.5

    # create a nice orange-red colormap
    lut = actor.colormap_lookup_table(scale_range=(0., 100.),
                                      hue_range=(0., 0.1),
                                      saturation_range=(1, 1),
                                      value_range=(1., 1))

    line = actor.line(bundle, metric, linewidth=0.1, lookup_colormap=lut)
    window.add(renderer, line)
    window.add(renderer, actor.scalar_bar(lut, ' '))

    report = window.analyze_renderer(renderer)

    npt.assert_almost_equal(report.actors, 1)
    # window.show(renderer)

    renderer.clear()

    nb_points = np.sum([len(b) for b in bundle])
    values = 100 * np.random.rand(nb_points)
    # values[:nb_points/2] = 0

    line = actor.streamtube(bundle, values, linewidth=0.1, lookup_colormap=lut)
    renderer.add(line)
    # window.show(renderer)

    report = window.analyze_renderer(renderer)
    npt.assert_equal(report.actors_classnames[0], 'vtkLODActor')

    renderer.clear()

    colors = np.random.rand(nb_points, 3)
    # values[:nb_points/2] = 0

    line = actor.line(bundle, colors, linewidth=2)
    renderer.add(line)
    # window.show(renderer)

    report = window.analyze_renderer(renderer)
    npt.assert_equal(report.actors_classnames[0], 'vtkLODActor')
    # window.show(renderer)

    arr = window.snapshot(renderer)
    report2 = window.analyze_snapshot(arr)
    npt.assert_equal(report2.objects, 1)

    # try other input options for colors
    renderer.clear()
    actor.line(bundle, (1., 0.5, 0))
    actor.line(bundle, np.arange(len(bundle)))
    actor.line(bundle)
    colors = [np.random.rand(*b.shape) for b in bundle]
    actor.line(bundle, colors=colors)