Ejemplo n.º 1
0
def test_fvtk_ellipsoid():

    evals = np.array([1.4, .35, .35]) * 10 ** (-3)
    evecs = np.eye(3)

    mevals = np.zeros((3, 2, 4, 3))
    mevecs = np.zeros((3, 2, 4, 3, 3))

    mevals[..., :] = evals
    mevecs[..., :, :] = evecs

    from dipy.data import get_sphere

    sphere = get_sphere('symmetric724')

    ren = fvtk.ren()

    fvtk.add(ren, fvtk.tensor(mevals, mevecs, sphere=sphere))

    fvtk.add(ren, fvtk.tensor(mevals, mevecs, np.ones(mevals.shape), sphere=sphere))

    assert_equal(ren.GetActors().GetNumberOfItems(), 2)
Ejemplo n.º 2
0
def test_fvtk_ellipsoid():

    evals = np.array([1.4, .35, .35]) * 10**(-3)
    evecs = np.eye(3)

    mevals = np.zeros((3, 2, 4, 3))
    mevecs = np.zeros((3, 2, 4, 3, 3))

    mevals[..., :] = evals
    mevecs[..., :, :] = evecs

    from dipy.data import get_sphere

    sphere = get_sphere('symmetric724')

    ren = fvtk.ren()

    fvtk.add(ren, fvtk.tensor(mevals, mevecs, sphere=sphere))

    fvtk.add(ren,
             fvtk.tensor(mevals, mevecs, np.ones(mevals.shape), sphere=sphere))

    assert_equal(ren.GetActors().GetNumberOfItems(), 2)
Ejemplo n.º 3
0
def plot_as_dti(gtab, data, params, dipy_sph, output_dir="."):
    logging.info("Fitting data to DTI model...")
    tenmodel = dti.TensorModel(gtab)
    tenfit = tenmodel.fit(data[params['slice']])

    FA = dti.fractional_anisotropy(tenfit.evals)
    FA = np.clip(FA, 0, 1)
    RGB = dti.color_fa(FA, tenfit.evecs)
    cfa = RGB
    cfa /= cfa.max()

    logging.info("Recording DTI plot...")
    camera_params, long_ax, view_ax, stack_ax = \
        prepare_plot_camera(data[params['slice']].shape[:-1], scale=2.2)
    r = fvtk.ren()
    fvtk.add(r, fvtk.tensor(tenfit.evals, tenfit.evecs, cfa, dipy_sph))
    r.set_camera(**camera_params)
    fname = os.path.join(output_dir, "plot-dti-0.png")
    fvtk.snapshot(r, size=(1500, 1500), offscreen=True, fname=fname)
Ejemplo n.º 4
0
establish a baseline, using the data as it is:
"""

fit_wls = dti_wls.fit(data)

fa1 = fit_wls.fa
evals1 = fit_wls.evals
evecs1 = fit_wls.evecs
cfa1 = dti.color_fa(fa1, evecs1)
sphere = dpd.get_sphere('symmetric724')
"""
We visualize the ODFs in the ROI using fvtk:
"""

ren = fvtk.ren()
fvtk.add(ren, fvtk.tensor(evals1, evecs1, cfa1, sphere))
print('Saving illustration as tensor_ellipsoids_wls.png')
fvtk.record(ren,
            n_frames=1,
            out_path='tensor_ellipsoids_wls.png',
            size=(600, 600))
"""
.. figure:: tensor_ellipsoids_wls.png
   :align: center

   Tensor Ellipsoids.
"""

fvtk.clear(ren)
"""
Next, we corrupt the data with some noise. To simulate a subject that moves
Ejemplo n.º 5
0
from dipy.viz import fvtk
ren = fvtk.ren()

evals = tenfit.evals[13:43, 44:74, 28:29]
evecs = tenfit.evecs[13:43, 44:74, 28:29]

"""
We can color the ellipsoids using the ``color_fa`` values that we calculated
above. In this example we additionally normalize the values to increase the
contrast.
"""

cfa = RGB[13:43, 44:74, 28:29]
cfa /= cfa.max()

fvtk.add(ren, fvtk.tensor(evals, evecs, cfa, sphere))

print('Saving illustration as tensor_ellipsoids.png')
fvtk.record(ren, n_frames=1, out_path='tensor_ellipsoids.png', size=(600, 600))

"""
.. figure:: tensor_ellipsoids.png
   :align: center

   **Tensor Ellipsoids**.
"""

fvtk.clear(ren)

"""
Finally, we can visualize the tensor orientation distribution functions
Ejemplo n.º 6
0
RGB = color_fa(FA, tensor_fit.evecs)
nib.save(nib.Nifti1Image(np.array(255*RGB, 'uint8'), image.get_affine()), 'tensor_rgb.nii.gz')

print('Computing tensor ellipsoids in a part of the splenium of the CC')

from dipy.data import get_sphere
sphere = get_sphere('symmetric724')

from dipy.viz import fvtk
ren = fvtk.ren()

eigenvalues = tensor_fit.evals[13:43, 44:74, 28:29]
eigenvectors = tensor_fit.evecs[13:43, 44:74, 28:29]

color_fa = RGB[13:43, 44:74, 28:29]
cfa /= cfa.max()

fvtk.add(ren, fvtk.tensor(eigenvalues, eigenvectors, color_fa, sphere))

print('Saving illustration as tensor_ellipsoids.png')
fvtk.record(ren, n_frames=1, out_path='tensor_ellipsoids.png')

fvtk.clear(ren)

tensor_odfs = tensor_model.fit(data[20:50, 55:85, 38:39]).odf(sphere)

fvtk.add(ren, fvtk.sphere_funcs(tensor_odfs, sphere, colormap=None))
#fvtk.show(r)
print('Saving illustration as tensor_odfs.png')
fvtk.record(ren, n_frames=1, out_path='tensor_odfs.png', size=(600, 600))
md1 = dti.mean_diffusivity(tenfit.evals)
nibabel.save(nibabel.Nifti1Image(md1.astype(numpy.float32), img.affine),
             'output_md.nii')
shutil.move('output_md.nii', args.output_nifti1_md)
move_directory_files(input_dir, args.output_nifti1_md_files_path, copy=True)

fa = numpy.clip(fa, 0, 1)
rgb = color_fa(fa, tenfit.evecs)
nibabel.save(nibabel.Nifti1Image(numpy.array(255 * rgb, 'uint8'), img.affine),
             'output_rgb.nii')
shutil.move('output_rgb.nii', args.output_nifti1_rgb)
move_directory_files(input_dir, args.output_nifti1_rgb_files_path, copy=True)

sphere = get_sphere('symmetric724')
ren = fvtk.ren()

evals = tenfit.evals[13:43, 44:74, 28:29]
evecs = tenfit.evecs[13:43, 44:74, 28:29]
cfa = rgb[13:43, 44:74, 28:29]
cfa /= cfa.max()
fvtk.add(ren, fvtk.tensor(evals, evecs, cfa, sphere))
fvtk.record(ren, n_frames=1, out_path='tensor_ellipsoids.png', size=(600, 600))
shutil.move('tensor_ellipsoids.png', args.output_png_ellipsoids)

fvtk.clear(ren)

tensor_odfs = tenmodel.fit(data[20:50, 55:85, 38:39]).odf(sphere)
fvtk.add(ren, fvtk.sphere_funcs(tensor_odfs, sphere, colormap=None))
fvtk.record(ren, n_frames=1, out_path='tensor_odfs.png', size=(600, 600))
shutil.move('tensor_odfs.png', args.output_png_odfs)
Ejemplo n.º 8
0
plt.figure('Showing the datasets')
plt.subplot(1, 2, 1).set_axis_off()
plt.imshow(data[:, :, axial_middle, 0].T, cmap='gray', origin='lower')
plt.subplot(1, 2, 2).set_axis_off()
plt.imshow(data[:, :, axial_middle, 10].T, cmap='gray', origin='lower')
plt.show()
plt.savefig('data.png', bbox_inches='tight')


from dipy.data import get_sphere
sphere = get_sphere('symmetric642')

from dipy.viz import fvtk
ren = fvtk.ren()

evals=tenfit.evals[55:85,80:90,40:45]
evecs=tenfit.evecs[55:85,80:90,40:45]

cfa = Rgbv[55:80, 80:90, 40:45]

#print cfa[1,1,1]
cfa /= cfa.max()

fvtk.add(ren, fvtk.tensor(evals, evecs, cfa))


fvtk.show(ren)
print('Saving illustration as fa.png')
fvtk.record(ren, n_frames=1, out_path='fa.png', size=(600, 600))
print "Hello World!"
Ejemplo n.º 9
0
"""

fit_wls = dti_wls.fit(data)

fa1 = fit_wls.fa
evals1 = fit_wls.evals
evecs1 = fit_wls.evecs
cfa1 = dti.color_fa(fa1, evecs1)
sphere = dpd.get_sphere('symmetric724')

"""
We visualize the ODFs in the ROI using fvtk:
"""

ren = fvtk.ren()
fvtk.add(ren, fvtk.tensor(evals1, evecs1, cfa1, sphere))
print('Saving illustration as tensor_ellipsoids_wls.png')
fvtk.record(ren, n_frames=1, out_path='tensor_ellipsoids_wls.png',
            size=(600, 600))

"""
.. figure:: tensor_ellipsoids_wls.png
   :align: center

   **Tensor Ellipsoids**.
"""

fvtk.clear(ren)

"""
Next, we corrupt the data with some noise. To simulate a subject that moves
Ejemplo n.º 10
0
axial_middle = data.shape[2] / 2
plt.figure('Showing the datasets')
plt.subplot(1, 2, 1).set_axis_off()
plt.imshow(data[:, :, axial_middle, 0].T, cmap='gray', origin='lower')
plt.subplot(1, 2, 2).set_axis_off()
plt.imshow(data[:, :, axial_middle, 10].T, cmap='gray', origin='lower')
plt.show()
plt.savefig('data.png', bbox_inches='tight')

from dipy.data import get_sphere
sphere = get_sphere('symmetric642')

from dipy.viz import fvtk
ren = fvtk.ren()

evals = tenfit.evals[55:85, 80:90, 40:45]
evecs = tenfit.evecs[55:85, 80:90, 40:45]

cfa = Rgbv[55:80, 80:90, 40:45]

#print cfa[1,1,1]
cfa /= cfa.max()

fvtk.add(ren, fvtk.tensor(evals, evecs, cfa))

fvtk.show(ren)
print('Saving illustration as fa.png')
fvtk.record(ren, n_frames=1, out_path='fa.png', size=(600, 600))
print "Hello World!"
Ejemplo n.º 11
0
                                    mask=mask,
                                    sphere=sphere,
                                    scale=.5)
ren.add(odf_slicer_actor)
slider(odf_slicer_actor, None)

data_small = data[:, :, 38:39]
dti_wls = dti.TensorModel(gtab)
fit_wls = dti_wls.fit(data_small)

fa1 = fit_wls.fa
evals1 = fit_wls.evals
evecs1 = fit_wls.evecs
cfa1 = dti.color_fa(fa1, evecs1)
ren = fvtk.ren()
fvtk.add(ren, fvtk.tensor(evals1, evecs1, cfa1, sphere))
#fvtk.record(ren, n_frames=1, out_path='tensor_ellipsoids.png',
#            size=(600, 600))
fvtk.show(ren)

print('Started CSD')
response, ratio = auto_response(gtab, data, roi_radius=10, fa_thr=0.7)
print('Finished response')
csd_model = ConstrainedSphericalDeconvModel(gtab, response)
csd_peaks = peaks_from_model(model=csd_model,
                             data=data,
                             sphere=sphere,
                             mask=mask,
                             relative_peak_threshold=.5,
                             min_separation_angle=25,
                             parallel=True)
Ejemplo n.º 12
0
def run(rawargs):
    arguments = docopt(doc, argv=rawargs, version='Orientation Check v{0}'.format(Version))
    inputs = [{"Value":"image file", "Flag": "--image"}, {"Value":"bvec file", "Flag": "--bvecs"}, {"Value":"bvec file", "Flag": "--bvecs"}]
    for inputinfo in inputs:
        if not exists(arguments[inputinfo["Flag"]]):
            print("The {0} specified does not exist!".format(inputinfo["Value"]))
            sys.exit(1)

    rawimage = nib.load(arguments["--image"])
    bvals, bvecs = read_bvals_bvecs(arguments['--bvals'], arguments['--bvecs'])
    print("Generating gradient table.")
    gtab = gradient_table(bvals, bvecs)

    #Define the tensor model
    print("Generating the tensor model.")
    dti_wls = dti.TensorModel(gtab, fit_method="NLLS")

    image_data = rawimage.get_data()


    print("Masking the brain.")
    image_masked, mask = median_otsu(image_data, 3, 1, autocrop=True, dilate=2)
    #print(image_masked)
    #image_masked_data = nib.nifti1.Nifti1Image(image_masked.astype(np.float32), image_data.get_affine())
    #print("Saving masked brain image")
    #nib.nifti1.save(image_masked_data, "./imagemasked.nii.gz")
    print("Resampling the brain to a standard resolution.")
    image, affine1 = reslice(image_masked, rawimage.get_affine(), rawimage.get_header().get_zooms()[:3], (3.0,3.0,3.0))
    mask, maskaffine1 = reslice(mask.astype(numpy.int), rawimage.get_affine(), rawimage.get_header().get_zooms()[:3], (3.0,3.0,3.0))
    #print(len([type(mask) for i in range(0,image.shape[3])]))
    #mask = numpy.expand_dims(mask,3)
    #print(mask)
    #print(mask.shape)
    #image=image*mask
    print(image[0][0][0])

    print("Checking the image dimensions")
    Xsize, Ysize, Zsize, directions = image.shape
    print("X: {0}\nY: {1}\nZ: {2}".format(Xsize, Ysize, Zsize))

    #Define Image Scopes
    print("Defining the image scopes.")
    imagedict = {"axial": {"dropdim": [0,1], "scope": (slice(0,Xsize), slice(0,Ysize), slice(math.floor(Zsize/2),math.floor(Zsize/2)+1))},
                 "coronal": {"dropdim": [0,2], "scope": (slice(0,Xsize), slice(math.floor(Ysize/2),math.floor(Ysize/2)+1), slice(0, Zsize))},
                 "sagittal": {"dropdim": [1,2], "scope": (slice(math.floor(Xsize/2),math.floor(Xsize/2)+1), slice(0,Ysize), slice(0, Zsize))}}


    #roi_idx = (slice(0,image.shape[0]), slice(0,image.shape[1]), slice(middleslice,middleslice+1))#(slice(0,image.shape[0]), slice(0,image.shape[1]), slice(int(image.shape[2]/2),int(image.shape[2]/2)+1))
    print("Defining sphere.")
    sphere = get_sphere('symmetric724')
    #sphere = dpd.get_sphere('symmetric362')

    #Slice the whole dataset by the scope
    print("Slicing the dataset with the scopes.")
    for view in ["sagittal", "coronal", "axial"]:
        imagedict[view]["image"] = image[imagedict[view]["scope"]]
        imagedict[view]["mask"] = mask[imagedict[view]["scope"]]
        print("Fitting {0} data.".format(view))
        fit_wls = dti_wls.fit(imagedict[view]["image"])
        print("Extracting {0} FA.".format(view))
        fa1 = fit_wls.fa * imagedict[view]["mask"]
        print("Extracting {0} EVALS.".format(view))
        evals1 = fit_wls.evals
        print("Extracting {0} EVECS.".format(view))
        evecs1 = fit_wls.evecs
        print("Extracting {0} Color FA.".format(view))
        cfa1 = dti.color_fa(fa1, evecs1)
        cfa1 = cfa1/cfa1.max()
        print("Defining {0} renderer.".format(view))
        render = fvtk.ren()
        print("Generating {0} image.".format(view))
        x =cfa1.shape[imagedict[view]["dropdim"][0]]
        y =cfa1.shape[imagedict[view]["dropdim"][1]]

        #print(x, y, 1, 3)
        cfa2 = cfa1.reshape(x, y, 1, 3)
        evals2 = evals1.reshape(x, y, 1, 3)*1.25
        evecs2 = evecs1.reshape(x, y, 1, 3, 3)*1.25
        print("Adding render.")
        fvtk.add(render, fvtk.tensor(evals2, evecs2, cfa2, sphere))
        print("Recording render.")
        with Xvfb() as xvfb:
            fvtk.record(render, out_path=arguments["--out"+view], size=(800,800), magnification=2)
        print("Image Saved")

    sys.exit(0)
Ejemplo n.º 13
0
def run(rawargs):
    arguments = docopt(doc,
                       argv=rawargs,
                       version='Orientation Check v{0}'.format(Version))
    inputs = [{
        "Value": "image file",
        "Flag": "--image"
    }, {
        "Value": "bvec file",
        "Flag": "--bvecs"
    }, {
        "Value": "bvec file",
        "Flag": "--bvecs"
    }]
    for inputinfo in inputs:
        if not exists(arguments[inputinfo["Flag"]]):
            print("The {0} specified does not exist!".format(
                inputinfo["Value"]))
            sys.exit(1)

    try:
        rawimage = nib.load(arguments["--image"])
        bvals, bvecs = read_bvals_bvecs(arguments['--bvals'],
                                        arguments['--bvecs'])
        #print(bvals)
        #print(bvecs)
        print("Generating gradient table.")
        gtab = gradient_table(bvals, bvecs)

        #Define the tensor model
        print("Generating the tensor model.")
        dti_wls = dti.TensorModel(gtab, fit_method="NLLS")

        image_data = rawimage.get_data()

        print("Masking the brain.")
        image_masked, mask = median_otsu(image_data,
                                         3,
                                         1,
                                         autocrop=True,
                                         dilate=2)
        #print(image_masked)
        #image_masked_data = nib.nifti1.Nifti1Image(image_masked.astype(np.float32), image_data.get_affine())
        #print("Saving masked brain image")
        #nib.nifti1.save(image_masked_data, "./imagemasked.nii.gz")
        print("Resampling the brain to a standard resolution.")
        image, affine1 = reslice(image_masked, rawimage.get_affine(),
                                 rawimage.get_header().get_zooms()[:3],
                                 (3.0, 3.0, 3.0))
        mask, maskaffine1 = reslice(mask.astype(numpy.int),
                                    rawimage.get_affine(),
                                    rawimage.get_header().get_zooms()[:3],
                                    (3.0, 3.0, 3.0))
        #print(len([type(mask) for i in range(0,image.shape[3])]))
        #mask = numpy.expand_dims(mask,3)
        #print(mask)
        #print(mask.shape)
        #image=image*mask
        print(image[0][0][0])

        print("Checking the image dimensions")
        Xsize, Ysize, Zsize, directions = image.shape
        print("X: {0}\nY: {1}\nZ: {2}".format(Xsize, Ysize, Zsize))

        #Define Image Scopes
        print("Defining the image scopes.")
        imagedict = {
            "axial": {
                "dropdim": [0, 1],
                "scope": (slice(0, Xsize), slice(0, Ysize),
                          slice(math.floor(Zsize / 2),
                                math.floor(Zsize / 2) + 1))
            },
            "coronal": {
                "dropdim": [0, 2],
                "scope": (slice(0, Xsize),
                          slice(math.floor(Ysize / 2),
                                math.floor(Ysize / 2) + 1), slice(0, Zsize))
            },
            "sagittal": {
                "dropdim": [1, 2],
                "scope": (slice(math.floor(Xsize / 2),
                                math.floor(Xsize / 2) + 1), slice(0, Ysize),
                          slice(0, Zsize))
            }
        }

        #roi_idx = (slice(0,image.shape[0]), slice(0,image.shape[1]), slice(middleslice,middleslice+1))#(slice(0,image.shape[0]), slice(0,image.shape[1]), slice(int(image.shape[2]/2),int(image.shape[2]/2)+1))
        print("Defining sphere.")
        #sphere = dpd.get_sphere('symmetric724')
        sphere = dpd.get_sphere('symmetric362')

        #Slice the whole dataset by the scope
        print("Slicing the dataset with the scopes.")
        for view in ["sagittal", "coronal", "axial"]:
            imagedict[view]["image"] = image[imagedict[view]["scope"]]
            imagedict[view]["mask"] = mask[imagedict[view]["scope"]]
            print("Fitting {0} data.".format(view))
            fit_wls = dti_wls.fit(imagedict[view]["image"])
            print("Extracting {0} FA.".format(view))
            fa1 = fit_wls.fa * imagedict[view]["mask"]
            print("Extracting {0} EVALS.".format(view))
            evals1 = fit_wls.evals
            print("Extracting {0} EVECS.".format(view))
            evecs1 = fit_wls.evecs
            print("Extracting {0} Color FA.".format(view))
            cfa1 = dti.color_fa(fa1, evecs1)
            cfa1 = cfa1 / cfa1.max()
            print("Defining {0} renderer.".format(view))
            render = fvtk.ren()
            print("Generating {0} image.".format(view))
            x = cfa1.shape[imagedict[view]["dropdim"][0]]
            y = cfa1.shape[imagedict[view]["dropdim"][1]]

            #print(x, y, 1, 3)
            cfa2 = cfa1.reshape(x, y, 1, 3)
            evals2 = evals1.reshape(x, y, 1, 3) * 1.25
            evecs2 = evecs1.reshape(x, y, 1, 3, 3) * 1.25
            print("Adding render.")
            fvtk.add(render, fvtk.tensor(evals2, evecs2, cfa2, sphere))
            print("Recording render.")
            with Xvfb() as xvfb:
                fvtk.record(render,
                            out_path=arguments["--out" + view],
                            size=(800, 800),
                            magnification=2)
            print("Image Saved")

    except:
        print("Could not check orientation of output image.")
        sys.exit(1)
    sys.exit(0)