Ejemplo n.º 1
0
    def gen_one_batch(self, genSample, img_fix, lab_fix, img_mv, lab_mv,
                      output_dir):
        fix_imgs, fix_labs, mv_imgs, mv_labs = genSample.get_batch_data_V2(
            [img_mv], [img_fix], [lab_mv], [lab_fix])
        trainFeed = self.create_feed_dict(fix_imgs, fix_labs, mv_imgs, mv_labs)
        input_mv_label, \
        input_fix_label, \
        warp_mv_label, \
        input_mv_img, \
        input_fix_img, \
        warp_mv_img = self.sess.run([self.input_MV_label,
                                     self.input_FIX_label,
                                     self.warped_MV_label,
                                     self.input_MV_image,
                                     self.input_FIX_image,
                                     self.warped_MV_image], feed_dict=trainFeed)
        param = sitk.ReadImage(img_fix)
        sitk_write_image(input_fix_img[0, ...], param, output_dir,
                         get_name_wo_suffix(img_fix))
        sitk_write_lab(input_fix_label[0, ...], param, output_dir,
                       get_name_wo_suffix(img_fix).replace('image', 'label'))

        sitk_write_image(warp_mv_img[0, ...], param, output_dir,
                         get_name_wo_suffix(img_mv))
        sitk_write_lab(warp_mv_label[0, ...], param, output_dir,
                       get_name_wo_suffix(img_mv).replace('image', 'label'))

        ddf_mv_fix = self.sess.run(self.ddf_MV_FIX, feed_dict=trainFeed)
        _, _, neg2 = neg_jac(ddf_mv_fix[0, ...])
        self.logger.debug("neg_jac  %d" % (neg2))
        ds = calculate_binary_dice(warp_mv_label, input_fix_label)
        hd = calculate_binary_hd(warp_mv_label,
                                 input_fix_label,
                                 spacing=param.GetSpacing())
        return ds, hd
Ejemplo n.º 2
0
    def validate(self):

        self.is_train = False
        init_op = tf.global_variables_initializer()
        self.saver = tf.train.Saver()
        self.sess.run(init_op)
        if self.load(self.args.checkpoint_dir):
            print(" [*] Load SUCCESS")
        else:
            print(" [!] Load failed...")

        genSample = AbdomenSampler(self.args, 'validate')
        # self.generator_sample_targetwise(genSample, )
        outputdir = self.args.sample_dir + "/atlas_target/"
        ds_all = []
        bf_ds_all = []
        jt_all = []
        for img_fix, lab_fix in zip(genSample.img_fix, genSample.lab_fix):
            output_dir = outputdir + get_name_wo_suffix(img_fix)
            mk_or_cleardir(output_dir)
            print(output_dir)
            for img_mv, lab_mv in zip(genSample.img_mv, genSample.lab_mv):
                bfds, ds = self.gen_one_batch(genSample, img_fix, lab_fix,
                                              img_mv, lab_mv, output_dir)
                # print("sim= %f"%ds)
                ds_all.append(ds)
                bf_ds_all.append(bfds)
            # print(ds_all)
        self.logger.debug("%s total_sim %s->%s " % (Get_Name_By_Index(
            self.args.component), self.args.Tatlas, self.args.Ttarget))
        print_mean_and_std(bf_ds_all)
        print_mean_and_std(ds_all)
Ejemplo n.º 3
0
 def generator_sample_atlaswise(self, genSample, outputdir):
     for img_mv, lab_mv in zip(genSample.img_mv, genSample.lab_mv):
         output_dir = outputdir + get_name_wo_suffix(img_mv)
         mk_or_cleardir(output_dir)
         print(output_dir)
         for img_fix, lab_fix in zip(genSample.img_fix, genSample.lab_fix):
             self.gen_test(genSample, img_fix, lab_fix, img_mv, lab_mv,
                           output_dir)
Ejemplo n.º 4
0
 def generator_sample_targetwise(self, genSample, outputdir):
     all_ds = []
     all_hd = []
     for img_fix, lab_fix in zip(genSample.img_fix, genSample.lab_fix):
         output_dir = outputdir + get_name_wo_suffix(img_fix)
         mk_or_cleardir(output_dir)
         print(output_dir)
         for img_mv, lab_mv in zip(genSample.img_mv, genSample.lab_mv):
             ds, hd = self.gen_one_batch(genSample, img_fix, lab_fix,
                                         img_mv, lab_mv, output_dir)
             all_ds.append(ds)
             all_hd.append(hd)
     outpu2excel(self.args.res_excel, self.args.MOLD_ID + "_DS", all_ds)
     outpu2excel(self.args.res_excel, self.args.MOLD_ID + "_HD", all_hd)
Ejemplo n.º 5
0
    def gen_one_batch(self, genSample, img_fix, lab_fix, img_mv, lab_mv,
                      output_dir):
        fix_imgs, fix_labs, mv_imgs, mv_labs = genSample.get_batch_data_V2(
            [img_mv], [img_fix], [lab_mv], [lab_fix])
        feed = self.create_feed_dict(fix_imgs, fix_labs, mv_imgs, mv_labs)
        input_mv_label, \
        input_fix_label, \
        warp_mv_label, \
        input_mv_img, \
        input_fix_img, \
        warp_mv_img,\
        fw,\
        bw= self.sess.run([self.input_MV_label,
                                     self.input_FIX_label,
                                     self.warped_MV_label,
                                     self.input_MV_image,
                                     self.input_FIX_image,
                                     self.warped_MV_image,
                                     self.theta_bw,
                                     self.theta_fw], feed_dict=feed)
        # param=sitk.ReadImage(img_fix)
        param = None
        sitk_write_image(
            input_fix_img[0, ...], param, output_dir,
            get_name_wo_suffix(img_fix).replace('image', 'target_image'))
        sitk_write_lab(
            input_fix_label[0, ...], param, output_dir,
            get_name_wo_suffix(lab_fix).replace('label', 'target_label'))

        sitk_write_image(
            warp_mv_img[0, ...], param, output_dir,
            get_name_wo_suffix(img_mv).replace('image', 'atlas_image'))
        sitk_write_lab(
            warp_mv_label[0, ...], param, output_dir,
            get_name_wo_suffix(lab_mv).replace('label', 'atlas_label'))

        resotre_mv, restore_fix = self.sess.run(
            [self.restore_MV_image, self.restore_FIX_image], feed_dict=feed)
        sitk_write_image(input_mv_img[0, ...], param, output_dir,
                         get_name_wo_suffix(img_mv))
        sitk_write_image(
            resotre_mv[0, ...], param, output_dir,
            get_name_wo_suffix(img_mv).replace('image', 'restore'))
        sitk_write_image(
            restore_fix[0, ...], param, output_dir,
            get_name_wo_suffix(img_fix).replace('image', 'restore'))

        print(fw)
        # contour= np.where(warp_mv_label> 0.5, 1, 0)
        # contour= contour.astype(np.uint16)
        # contour=sitk.GetImageFromArray(np.squeeze(contour))

        # contour=sitk.LabelContour(contour,True)
        # sitk_write_lab(sitk.GetArrayFromImage(contour),param , output_dir,get_name_wo_suffix(img_mv).replace('image','contour'))

        # ddf_fix_mv, ddf_mv_fix = self.sess.run([self.ddf_FIX_MV, self.ddf_MV_FIX], feed_dict=feed)
        # _, _, neg1 = neg_jac(ddf_fix_mv[0, ...])
        # _, _, neg2 = neg_jac(ddf_mv_fix[0, ...])
        ds = calculate_binary_dice(warp_mv_label, input_fix_label)
        bf_ds = calculate_binary_dice(input_mv_label, input_fix_label)
        return bf_ds, ds
Ejemplo n.º 6
0
    def fusion_one_target(self, itr):
        target_img_batch, target_lab_batch, atlas_img_batch, atlas_lab_batch, sim_batch, p_fix_img, p_fix_lab = self.validate_sampler.next_sample_4_fusion(
        )
        sims = []

        param = sitk.ReadImage(p_fix_img[0])
        sitk_write_lab(np.squeeze(target_lab_batch.astype(np.uint8)),
                       param,
                       dir=self.args.validate_dir,
                       name=get_name_wo_suffix(p_fix_lab[0]))
        sitk_write_image(np.squeeze(target_img_batch),
                         param,
                         dir=self.args.validate_dir,
                         name=get_name_wo_suffix(p_fix_img[0]))

        for i in range(atlas_lab_batch.shape[-2]):
            trainFeed = {
                self.ph_target_image: target_img_batch,
                self.ph_target_label: target_lab_batch,
                self.ph_atlas_label: atlas_lab_batch[..., i, :],
                self.ph_gt_dicesim: sim_batch[..., i, :]
            }
            target_img, atlas_label, gt, target_lab, pred_lab, pred_sim = self.sess.run(
                [
                    self.ph_target_image, self.ph_atlas_label,
                    self.ph_gt_dicesim, self.ph_target_label,
                    self.predict_label, self.predict_sim
                ],
                feed_dict=trainFeed)
            sims.append(pred_sim)
            sitk_write_lab(np.squeeze(atlas_lab_batch[..., i, :]),
                           param,
                           dir=self.args.validate_dir,
                           name=get_name_wo_suffix(p_fix_lab[0].replace(
                               'label', 'label_' + str(i))))
            sitk_write_image(np.squeeze(pred_sim),
                             param,
                             dir=self.args.validate_dir,
                             name=get_name_wo_suffix(p_fix_lab[0]).replace(
                                 'label', 'sim_' + str(i)))

        sims = np.stack(sims, -1)
        u_lab = np.unique(target_lab.astype(np.uint8))
        LabelStats = np.zeros((len(u_lab), ) + np.squeeze(target_lab).shape)
        for i, lab in enumerate(u_lab):
            LabelStats[i] = np.sum(
                (np.squeeze(atlas_lab_batch) == lab).astype(np.int16) *
                np.squeeze(sims),
                axis=-1)
        fusion_label = u_lab[np.argmax(LabelStats, axis=0)]
        ds = calculate_binary_dice(fusion_label, target_lab_batch)
        hd = calculate_binary_hd(fusion_label,
                                 target_lab_batch,
                                 spacing=param.GetSpacing())

        # sitk_write_image(np.squeeze(target_img_batch),param,dir=os.path.dirname(p_fix_lab[0]),name=get_name_wo_suffix(p_fix_img[0]))
        sitk_write_lab(np.squeeze(fusion_label).astype(np.uint8),
                       param,
                       dir=os.path.dirname(p_fix_lab[0]),
                       name=get_name_wo_suffix(p_fix_lab[0]).replace(
                           'label', 'net_fusion_label'))
        return ds, hd
Ejemplo n.º 7
0
def generator_ROI_mask(args):

    labs=sort_glob("../../dataset/MMWHS/" + "/%s-test-label/*.nii.gz" % (args.Ttarget))
    for p_lab in labs:
        lab = sitk.ReadImage(p_lab)
        bbox = get_bounding_box_by_id(sitk.GetArrayFromImage(lab), padding=10,id=None)
        # sitk.RegionOfInterest(lab,)
        # crop_lab = crop_by_bbox(lab, bbox)
        array_lab=sitk.GetArrayFromImage(lab)
        array_lab[0:,0:,0:]=0
        array_lab[bbox[0].start:bbox[0].stop + 1, bbox[1].start:bbox[1].stop + 1,bbox[2].start:bbox[2].stop + 1 ]=1
        sitk_write_lab(array_lab,parameter_img=lab,dir='../../dataset/MMWHS'+"/%s-label-test_ROI/"%(args.Ttarget),name=get_name_wo_suffix(p_lab))
Ejemplo n.º 8
0
 def gen_warp_atlas(self, dir, genSample, i, img_fix, lab_fix, is_aug=True):
     output_dir = self.args.gen_dir + "/" + dir + "/target_" + str(
         i) + "_" + get_name_wo_suffix(img_fix)
     mk_or_cleardir(output_dir)
     params = []
     input_fix_imgs = []
     input_fix_labels = []
     warp_mv_imgs = []
     warp_mv_labels = []
     losses = []
     sims = []
     for img_mv, lab_mv in zip(genSample.img_mv, genSample.lab_mv):
         fix_imgs, fix_labs, mv_imgs, mv_labs = genSample.get_batch_data_V2(
             [img_mv], [img_fix], [lab_mv], [lab_fix])
         trainFeed = self.create_feed_dict(fix_imgs, fix_labs, mv_imgs,
                                           mv_labs, is_aug)
         input_mv_label, \
         input_fix_label, \
         warp_mv_label, \
         input_mv_img, \
         input_fix_img, \
         warp_mv_img = self.sess.run([self.input_MV_label,
                                      self.input_FIX_label,
                                      self.warped_MV_label,
                                      self.input_MV_image,
                                      self.input_FIX_image,
                                      self.warped_MV_image], feed_dict=trainFeed)
         input_fix_label = np.where(input_fix_label > 0.5, 1, 0)
         warp_mv_label = np.where(warp_mv_label > 0.5, 1, 0)
         sims.append(
             calculate_binary_dice(input_fix_label[0, ...],
                                   warp_mv_label[0, ...]))
         param = sitk.ReadImage(img_fix)
         params.append(param)
         input_fix_imgs.append(input_fix_img[0, ...])
         input_fix_labels.append(input_fix_label[0, ...])
         warp_mv_imgs.append(warp_mv_img[0, ...])
         warp_mv_labels.append(warp_mv_label[0, ...])
         losses.append(
             conditional_entropy_label_over_image(
                 np.squeeze(input_fix_img[0, ...]),
                 np.squeeze(warp_mv_label[0, ...])))
     indexs = np.argsort(losses)
     for ind in indexs:
         sitk_write_image(warp_mv_imgs[ind],
                          params[ind],
                          dir=output_dir,
                          name=str(ind) + "_mv_img")
         sitk_write_lab(warp_mv_labels[ind],
                        params[ind],
                        dir=output_dir,
                        name=str(ind) + "_mv_lab")
     sitk_write_image(input_fix_imgs[0],
                      params[0],
                      dir=output_dir,
                      name=str(0) + "_fix_img")
     sitk_write_lab(input_fix_labels[0],
                    params[0],
                    dir=output_dir,
                    name=str(0) + "_fix_lab")
     self.logger.debug(sims)
     self.logger.debug("%s %f -> %f" %
                       (output_dir, np.mean(sims),
                        np.mean([sims[ind] for ind in indexs[:5]])))