def test_no_endog(): # Test for RuntimeError when no endog is provided by the time filtering # is initialized. mod = Model(endog='test', k_states=1) # directly call the _initialize_filter function assert_raises(RuntimeError, mod._initialize_filter) # indirectly call it through filtering mod.initialize_approximate_diffuse() assert_raises(RuntimeError, mod.filter)
def test_loglike(): # Tests of invalid calls to the loglike function endog = np.ones((10, 1)) mod = Model(endog, k_states=1, initialization='approximate_diffuse') mod['design', :] = 1 mod['selection', :] = 1 mod['state_cov', :] = 1 # Test that self.memory_no_likelihood = True raises an error mod.memory_no_likelihood = True assert_raises(RuntimeError, mod.loglike) assert_raises(RuntimeError, mod.loglikeobs)
def test_loglike(): # Tests of invalid calls to the loglike function endog = np.ones((10,1)) mod = Model(endog, k_states=1, initialization='approximate_diffuse') mod['design', :] = 1 mod['selection', :] = 1 mod['state_cov', :] = 1 # Test that self.memory_no_likelihood = True raises an error mod.memory_no_likelihood = True assert_raises(RuntimeError, mod.loglike) assert_raises(RuntimeError, mod.loglikeobs)
def __init__(self, dtype=float, alternate_timing=False, **kwargs): self.true = results_kalman_filter.uc_bi self.true_states = pd.DataFrame(self.true['states']) # GDP and Unemployment, Quarterly, 1948.1 - 1995.3 data = pd.DataFrame(self.true['data'], index=pd.date_range('1947-01-01', '1995-07-01', freq='QS'), columns=['GDP', 'UNEMP'])[4:] data['GDP'] = np.log(data['GDP']) data['UNEMP'] = (data['UNEMP'] / 100) k_states = 6 self.model = Model(data, k_states=k_states, **kwargs) # Statespace representation self.model.design[:, :, 0] = [[1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1]] self.model.transition[([0, 0, 1, 1, 2, 3, 4, 5], [0, 4, 1, 2, 1, 2, 4, 5], [0, 0, 0, 0, 0, 0, 0, 0])] = [1, 1, 0, 0, 1, 1, 1, 1] self.model.selection = np.eye(self.model.k_states) # Update matrices with given parameters (sigma_v, sigma_e, sigma_w, sigma_vl, sigma_ec, phi_1, phi_2, alpha_1, alpha_2, alpha_3) = np.array(self.true['parameters'], ) self.model.design[([1, 1, 1], [1, 2, 3], [0, 0, 0])] = [alpha_1, alpha_2, alpha_3] self.model.transition[([1, 1], [1, 2], [0, 0])] = [phi_1, phi_2] self.model.obs_cov[1, 1, 0] = sigma_ec**2 self.model.state_cov[np.diag_indices(k_states) + (np.zeros(k_states, dtype=int), )] = [ sigma_v**2, sigma_e**2, 0, 0, sigma_w**2, sigma_vl**2 ] # Initialization initial_state = np.zeros((k_states, )) initial_state_cov = np.eye(k_states) * 100 # Initialization: modification if not alternate_timing: initial_state_cov = np.dot( np.dot(self.model.transition[:, :, 0], initial_state_cov), self.model.transition[:, :, 0].T) else: self.model.timing_init_filtered = True self.model.initialize_known(initial_state, initial_state_cov)
def __init__(self, dtype=float, alternate_timing=False, **kwargs): self.true = results_kalman_filter.uc_uni self.true_states = pd.DataFrame(self.true['states']) # GDP, Quarterly, 1947.1 - 1995.3 data = pd.DataFrame(self.true['data'], index=pd.date_range('1947-01-01', '1995-07-01', freq='QS'), columns=['GDP']) data['lgdp'] = np.log(data['GDP']) # Construct the statespace representation k_states = 4 self.model = Model(data['lgdp'], k_states=k_states, **kwargs) self.model.design[:, :, 0] = [1, 1, 0, 0] self.model.transition[([0, 0, 1, 1, 2, 3], [0, 3, 1, 2, 1, 3], [0, 0, 0, 0, 0, 0])] = [1, 1, 0, 0, 1, 1] self.model.selection = np.eye(self.model.k_states) # Update matrices with given parameters (sigma_v, sigma_e, sigma_w, phi_1, phi_2) = np.array(self.true['parameters']) self.model.transition[([1, 1], [1, 2], [0, 0])] = [phi_1, phi_2] self.model.state_cov[np.diag_indices(k_states) + (np.zeros(k_states, dtype=int), )] = [ sigma_v**2, sigma_e**2, 0, sigma_w**2 ] # Initialization initial_state = np.zeros((k_states, )) initial_state_cov = np.eye(k_states) * 100 # Initialization: modification if not alternate_timing: initial_state_cov = np.dot( np.dot(self.model.transition[:, :, 0], initial_state_cov), self.model.transition[:, :, 0].T) else: self.model.timing_init_filtered = True self.model.initialize_known(initial_state, initial_state_cov)
def test_filter(): # Tests of invalid calls to the filter function endog = np.ones((10,1)) mod = Model(endog, k_states=1, initialization='approximate_diffuse') mod['design', :] = 1 mod['selection', :] = 1 mod['state_cov', :] = 1 # Test default filter results res = mod.filter() assert_equal(isinstance(res, SmootherResults), True) # Test specified invalid results class assert_raises(ValueError, mod.filter, results=object) # Test specified valid results class res = mod.filter(results=SmootherResults) assert_equal(isinstance(res, SmootherResults), True)
def test_filter(): # Tests of invalid calls to the filter function endog = np.ones((10, 1)) mod = Model(endog, k_states=1, initialization='approximate_diffuse') mod['design', :] = 1 mod['selection', :] = 1 mod['state_cov', :] = 1 # Test default filter results res = mod.filter() assert_equal(isinstance(res, SmootherResults), True) # Test specified invalid results class assert_raises(ValueError, mod.filter, results=object) # Test specified valid results class res = mod.filter(results=SmootherResults) assert_equal(isinstance(res, SmootherResults), True)
def __init__(self, dtype=float, alternate_timing=False, **kwargs): self.true = results_kalman_filter.uc_bi self.true_states = pd.DataFrame(self.true['states']) # GDP and Unemployment, Quarterly, 1948.1 - 1995.3 data = pd.DataFrame( self.true['data'], index=pd.date_range('1947-01-01', '1995-07-01', freq='QS'), columns=['GDP', 'UNEMP'] )[4:] data['GDP'] = np.log(data['GDP']) data['UNEMP'] = (data['UNEMP']/100) k_states = 6 self.model = Model(data, k_states=k_states, **kwargs) # Statespace representation self.model.design[:, :, 0] = [[1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1]] self.model.transition[ ([0, 0, 1, 1, 2, 3, 4, 5], [0, 4, 1, 2, 1, 2, 4, 5], [0, 0, 0, 0, 0, 0, 0, 0]) ] = [1, 1, 0, 0, 1, 1, 1, 1] self.model.selection = np.eye(self.model.k_states) # Update matrices with given parameters (sigma_v, sigma_e, sigma_w, sigma_vl, sigma_ec, phi_1, phi_2, alpha_1, alpha_2, alpha_3) = np.array( self.true['parameters'], ) self.model.design[([1, 1, 1], [1, 2, 3], [0, 0, 0])] = [ alpha_1, alpha_2, alpha_3 ] self.model.transition[([1, 1], [1, 2], [0, 0])] = [phi_1, phi_2] self.model.obs_cov[1, 1, 0] = sigma_ec**2 self.model.state_cov[ np.diag_indices(k_states)+(np.zeros(k_states, dtype=int),)] = [ sigma_v**2, sigma_e**2, 0, 0, sigma_w**2, sigma_vl**2 ] # Initialization initial_state = np.zeros((k_states,)) initial_state_cov = np.eye(k_states)*100 # Initialization: modification if not alternate_timing: initial_state_cov = np.dot( np.dot(self.model.transition[:, :, 0], initial_state_cov), self.model.transition[:, :, 0].T ) else: self.model.timing_init_filtered = True self.model.initialize_known(initial_state, initial_state_cov)
def __init__(self, dtype=float, alternate_timing=False, **kwargs): self.true = results_kalman_filter.uc_uni self.true_states = pd.DataFrame(self.true['states']) # GDP, Quarterly, 1947.1 - 1995.3 data = pd.DataFrame( self.true['data'], index=pd.date_range('1947-01-01', '1995-07-01', freq='QS'), columns=['GDP'] ) data['lgdp'] = np.log(data['GDP']) # Construct the statespace representation k_states = 4 self.model = Model(data['lgdp'], k_states=k_states, **kwargs) self.model.design[:, :, 0] = [1, 1, 0, 0] self.model.transition[([0, 0, 1, 1, 2, 3], [0, 3, 1, 2, 1, 3], [0, 0, 0, 0, 0, 0])] = [1, 1, 0, 0, 1, 1] self.model.selection = np.eye(self.model.k_states) # Update matrices with given parameters (sigma_v, sigma_e, sigma_w, phi_1, phi_2) = np.array( self.true['parameters'] ) self.model.transition[([1, 1], [1, 2], [0, 0])] = [phi_1, phi_2] self.model.state_cov[ np.diag_indices(k_states)+(np.zeros(k_states, dtype=int),)] = [ sigma_v**2, sigma_e**2, 0, sigma_w**2 ] # Initialization initial_state = np.zeros((k_states,)) initial_state_cov = np.eye(k_states)*100 # Initialization: modification if not alternate_timing: initial_state_cov = np.dot( np.dot(self.model.transition[:, :, 0], initial_state_cov), self.model.transition[:, :, 0].T ) else: self.model.timing_init_filtered = True self.model.initialize_known(initial_state, initial_state_cov)
def test_slice_notation(): # Test setting and getting state space representation matrices using the # slice notation. endog = np.arange(10) * 1.0 mod = Model(endog, k_states=2) # Test invalid __setitem__ def set_designs(): mod['designs'] = 1 def set_designs2(): mod['designs', 0, 0] = 1 def set_designs3(): mod[0] = 1 assert_raises(IndexError, set_designs) assert_raises(IndexError, set_designs2) assert_raises(IndexError, set_designs3) # Test invalid __getitem__ assert_raises(IndexError, lambda: mod['designs']) assert_raises(IndexError, lambda: mod['designs', 0, 0, 0]) assert_raises(IndexError, lambda: mod[0]) # Test valid __setitem__, __getitem__ assert_equal(mod.design[0, 0, 0], 0) mod['design', 0, 0, 0] = 1 assert_equal(mod['design'].sum(), 1) assert_equal(mod.design[0, 0, 0], 1) assert_equal(mod['design', 0, 0, 0], 1) # Test valid __setitem__, __getitem__ with unspecified time index mod['design'] = np.zeros(mod['design'].shape) assert_equal(mod.design[0, 0], 0) mod['design', 0, 0] = 1 assert_equal(mod.design[0, 0], 1) assert_equal(mod['design', 0, 0], 1)
class Clark1987(object): """ Clark's (1987) univariate unobserved components model of real GDP (as presented in Kim and Nelson, 1999) Test data produced using GAUSS code described in Kim and Nelson (1999) and found at http://econ.korea.ac.kr/~cjkim/SSMARKOV.htm See `results.results_kalman_filter` for more information. """ def __init__(self, dtype=float, alternate_timing=False, **kwargs): self.true = results_kalman_filter.uc_uni self.true_states = pd.DataFrame(self.true['states']) # GDP, Quarterly, 1947.1 - 1995.3 data = pd.DataFrame(self.true['data'], index=pd.date_range('1947-01-01', '1995-07-01', freq='QS'), columns=['GDP']) data['lgdp'] = np.log(data['GDP']) # Construct the statespace representation k_states = 4 self.model = Model(data['lgdp'], k_states=k_states, **kwargs) self.model.design[:, :, 0] = [1, 1, 0, 0] self.model.transition[([0, 0, 1, 1, 2, 3], [0, 3, 1, 2, 1, 3], [0, 0, 0, 0, 0, 0])] = [1, 1, 0, 0, 1, 1] self.model.selection = np.eye(self.model.k_states) # Update matrices with given parameters (sigma_v, sigma_e, sigma_w, phi_1, phi_2) = np.array(self.true['parameters']) self.model.transition[([1, 1], [1, 2], [0, 0])] = [phi_1, phi_2] self.model.state_cov[np.diag_indices(k_states) + (np.zeros(k_states, dtype=int), )] = [ sigma_v**2, sigma_e**2, 0, sigma_w**2 ] # Initialization initial_state = np.zeros((k_states, )) initial_state_cov = np.eye(k_states) * 100 # Initialization: modification if not alternate_timing: initial_state_cov = np.dot( np.dot(self.model.transition[:, :, 0], initial_state_cov), self.model.transition[:, :, 0].T) else: self.model.timing_init_filtered = True self.model.initialize_known(initial_state, initial_state_cov) def run_filter(self): # Filter the data self.results = self.model.filter() def test_loglike(self): assert_almost_equal(self.results.llf_obs[self.true['start']:].sum(), self.true['loglike'], 5) def test_filtered_state(self): assert_almost_equal( self.results.filtered_state[0][self.true['start']:], self.true_states.iloc[:, 0], 4) assert_almost_equal( self.results.filtered_state[1][self.true['start']:], self.true_states.iloc[:, 1], 4) assert_almost_equal( self.results.filtered_state[3][self.true['start']:], self.true_states.iloc[:, 2], 4)
def test_cython(): # Test the cython _kalman_filter creation, re-creation, calling, etc. # Check that datatypes are correct: for prefix, dtype in tools.prefix_dtype_map.items(): endog = np.array(1., ndmin=2, dtype=dtype) mod = Model(endog='test', k_states=1, dtype=dtype) # Bind data and initialize the ?KalmanFilter object mod.bind(endog) mod._initialize_filter() # Check that the dtype and prefix are correct assert_equal(mod.prefix, prefix) assert_equal(mod.dtype, dtype) # Test that a dKalmanFilter instance was created assert_equal(prefix in mod._kalman_filters, True) kf = mod._kalman_filters[prefix] assert_equal(isinstance(kf, tools.prefix_kalman_filter_map[prefix]), True) # Test that the default returned _kalman_filter is the above instance assert_equal(mod._kalman_filter, kf) # Check that upcasting datatypes / ?KalmanFilter works (e.g. d -> z) mod = Model(endog='test', k_states=1) # Default dtype is float assert_equal(mod.prefix, 'd') assert_equal(mod.dtype, np.float64) # Prior to initialization, no ?KalmanFilter exists assert_equal(mod._kalman_filter, None) # Bind data and initialize the ?KalmanFilter object endog = np.ascontiguousarray(np.array([1., 2.], dtype=np.float64)) mod.bind(endog) mod._initialize_filter() kf = mod._kalman_filters['d'] # Rebind data, still float, check that we haven't changed mod.bind(endog) mod._initialize_filter() assert_equal(mod._kalman_filter, kf) # Force creating new ?Statespace and ?KalmanFilter, by changing the # time-varying character of an array mod.design = np.zeros((1,1,2)) mod._initialize_filter() assert_equal(mod._kalman_filter == kf, False) kf = mod._kalman_filters['d'] # Rebind data, now complex, check that the ?KalmanFilter instance has # changed endog = np.ascontiguousarray(np.array([1., 2.], dtype=np.complex128)) mod.bind(endog) assert_equal(mod._kalman_filter == kf, False)
class Clark1987(object): """ Clark's (1987) univariate unobserved components model of real GDP (as presented in Kim and Nelson, 1999) Test data produced using GAUSS code described in Kim and Nelson (1999) and found at http://econ.korea.ac.kr/~cjkim/SSMARKOV.htm See `results.results_kalman_filter` for more information. """ def __init__(self, dtype=float, alternate_timing=False, **kwargs): self.true = results_kalman_filter.uc_uni self.true_states = pd.DataFrame(self.true['states']) # GDP, Quarterly, 1947.1 - 1995.3 data = pd.DataFrame( self.true['data'], index=pd.date_range('1947-01-01', '1995-07-01', freq='QS'), columns=['GDP'] ) data['lgdp'] = np.log(data['GDP']) # Construct the statespace representation k_states = 4 self.model = Model(data['lgdp'], k_states=k_states, **kwargs) self.model.design[:, :, 0] = [1, 1, 0, 0] self.model.transition[([0, 0, 1, 1, 2, 3], [0, 3, 1, 2, 1, 3], [0, 0, 0, 0, 0, 0])] = [1, 1, 0, 0, 1, 1] self.model.selection = np.eye(self.model.k_states) # Update matrices with given parameters (sigma_v, sigma_e, sigma_w, phi_1, phi_2) = np.array( self.true['parameters'] ) self.model.transition[([1, 1], [1, 2], [0, 0])] = [phi_1, phi_2] self.model.state_cov[ np.diag_indices(k_states)+(np.zeros(k_states, dtype=int),)] = [ sigma_v**2, sigma_e**2, 0, sigma_w**2 ] # Initialization initial_state = np.zeros((k_states,)) initial_state_cov = np.eye(k_states)*100 # Initialization: modification if not alternate_timing: initial_state_cov = np.dot( np.dot(self.model.transition[:, :, 0], initial_state_cov), self.model.transition[:, :, 0].T ) else: self.model.timing_init_filtered = True self.model.initialize_known(initial_state, initial_state_cov) def run_filter(self): # Filter the data self.results = self.model.filter() def test_loglike(self): assert_almost_equal( self.results.llf_obs[self.true['start']:].sum(), self.true['loglike'], 5 ) def test_filtered_state(self): assert_almost_equal( self.results.filtered_state[0][self.true['start']:], self.true_states.iloc[:, 0], 4 ) assert_almost_equal( self.results.filtered_state[1][self.true['start']:], self.true_states.iloc[:, 1], 4 ) assert_almost_equal( self.results.filtered_state[3][self.true['start']:], self.true_states.iloc[:, 2], 4 )
def test_cython(): # Test the cython _kalman_filter creation, re-creation, calling, etc. # Check that datatypes are correct: for prefix, dtype in tools.prefix_dtype_map.items(): endog = np.array(1., ndmin=2, dtype=dtype) mod = Model(endog='test', k_states=1, dtype=dtype) # Bind data and initialize the ?KalmanFilter object mod.bind(endog) mod._initialize_filter() # Check that the dtype and prefix are correct assert_equal(mod.prefix, prefix) assert_equal(mod.dtype, dtype) # Test that a dKalmanFilter instance was created assert_equal(prefix in mod._kalman_filters, True) kf = mod._kalman_filters[prefix] assert_equal(isinstance(kf, tools.prefix_kalman_filter_map[prefix]), True) # Test that the default returned _kalman_filter is the above instance assert_equal(mod._kalman_filter, kf) # Check that upcasting datatypes / ?KalmanFilter works (e.g. d -> z) mod = Model(endog='test', k_states=1) # Default dtype is float assert_equal(mod.prefix, 'd') assert_equal(mod.dtype, np.float64) # Prior to initialization, no ?KalmanFilter exists assert_equal(mod._kalman_filter, None) # Bind data and initialize the ?KalmanFilter object endog = np.ascontiguousarray(np.array([1., 2.], dtype=np.float64)) mod.bind(endog) mod._initialize_filter() kf = mod._kalman_filters['d'] # Rebind data, still float, check that we haven't changed mod.bind(endog) mod._initialize_filter() assert_equal(mod._kalman_filter, kf) # Force creating new ?Statespace and ?KalmanFilter, by changing the # time-varying character of an array mod.design = np.zeros((1, 1, 2)) mod._initialize_filter() assert_equal(mod._kalman_filter == kf, False) kf = mod._kalman_filters['d'] # Rebind data, now complex, check that the ?KalmanFilter instance has # changed endog = np.ascontiguousarray(np.array([1., 2.], dtype=np.complex128)) mod.bind(endog) assert_equal(mod._kalman_filter == kf, False)
def test_predict(): # Tests of invalid calls to the predict function warnings.simplefilter("always") endog = np.ones((10,1)) mod = Model(endog, k_states=1, initialization='approximate_diffuse') mod['design', :] = 1 mod['obs_intercept'] = np.zeros((1,10)) mod['selection', :] = 1 mod['state_cov', :] = 1 # Check that we need both forecasts and predicted output for prediction mod.memory_no_forecast = True res = mod.filter() assert_raises(ValueError, res.predict) mod.memory_no_forecast = False mod.memory_no_predicted = True res = mod.filter() assert_raises(ValueError, res.predict) mod.memory_no_predicted = False # Now get a clean filter object res = mod.filter() # Check that start < 0 is an error assert_raises(ValueError, res.predict, start=-1) # Check that end < start is an error assert_raises(ValueError, res.predict, start=2, end=1) # Check that dynamic < 0 is an error assert_raises(ValueError, res.predict, dynamic=-1) # Check that dynamic > end is an warning with warnings.catch_warnings(record=True) as w: res.predict(end=1, dynamic=2) message = ('Dynamic prediction specified to begin after the end of' ' prediction, and so has no effect.') assert_equal(str(w[0].message), message) # Check that dynamic > nobs is an warning with warnings.catch_warnings(record=True) as w: res.predict(end=11, dynamic=11, obs_intercept=np.zeros((1,1))) message = ('Dynamic prediction specified to begin during' ' out-of-sample forecasting period, and so has no' ' effect.') assert_equal(str(w[0].message), message) # Check for a warning when providing a non-used statespace matrix with warnings.catch_warnings(record=True) as w: res.predict(end=res.nobs+1, design=True, obs_intercept=np.zeros((1,1))) message = ('Model has time-invariant design matrix, so the design' ' argument to `predict` has been ignored.') assert_equal(str(w[0].message), message) # Check that an error is raised when a new time-varying matrix is not # provided assert_raises(ValueError, res.predict, end=res.nobs+1) # Check that an error is raised when a non-two-dimensional obs_intercept # is given assert_raises(ValueError, res.predict, end=res.nobs+1, obs_intercept=np.zeros(1)) # Check that an error is raised when an obs_intercept with incorrect length # is given assert_raises(ValueError, res.predict, end=res.nobs+1, obs_intercept=np.zeros(2)) # Check that start=None gives start=0 and end=None gives end=nobs assert_equal(res.predict().forecasts.shape, (1,res.nobs)) # Check that dynamic=True begins dynamic prediction immediately # TODO just a smoke test res.predict(dynamic=True) # Check that full_results=True yields a SmootherResults object assert_equal(isinstance(res.predict(), PredictionResults), True) # Check that an error is raised when a non-two-dimensional obs_cov # is given # ...and... # Check that an error is raised when an obs_cov with incorrect length # is given mod = Model(endog, k_states=1, initialization='approximate_diffuse') mod['design', :] = 1 mod['obs_cov'] = np.zeros((1,1,10)) mod['selection', :] = 1 mod['state_cov', :] = 1 res = mod.filter() assert_raises(ValueError, res.predict, end=res.nobs+1, obs_cov=np.zeros((1,1))) assert_raises(ValueError, res.predict, end=res.nobs+1, obs_cov=np.zeros((1,1,2)))
class Clark1989(object): """ Clark's (1989) bivariate unobserved components model of real GDP (as presented in Kim and Nelson, 1999) Tests two-dimensional observation data. Test data produced using GAUSS code described in Kim and Nelson (1999) and found at http://econ.korea.ac.kr/~cjkim/SSMARKOV.htm See `results.results_kalman_filter` for more information. """ def __init__(self, dtype=float, alternate_timing=False, **kwargs): self.true = results_kalman_filter.uc_bi self.true_states = pd.DataFrame(self.true['states']) # GDP and Unemployment, Quarterly, 1948.1 - 1995.3 data = pd.DataFrame(self.true['data'], index=pd.date_range('1947-01-01', '1995-07-01', freq='QS'), columns=['GDP', 'UNEMP'])[4:] data['GDP'] = np.log(data['GDP']) data['UNEMP'] = (data['UNEMP'] / 100) k_states = 6 self.model = Model(data, k_states=k_states, **kwargs) # Statespace representation self.model.design[:, :, 0] = [[1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1]] self.model.transition[([0, 0, 1, 1, 2, 3, 4, 5], [0, 4, 1, 2, 1, 2, 4, 5], [0, 0, 0, 0, 0, 0, 0, 0])] = [1, 1, 0, 0, 1, 1, 1, 1] self.model.selection = np.eye(self.model.k_states) # Update matrices with given parameters (sigma_v, sigma_e, sigma_w, sigma_vl, sigma_ec, phi_1, phi_2, alpha_1, alpha_2, alpha_3) = np.array(self.true['parameters'], ) self.model.design[([1, 1, 1], [1, 2, 3], [0, 0, 0])] = [alpha_1, alpha_2, alpha_3] self.model.transition[([1, 1], [1, 2], [0, 0])] = [phi_1, phi_2] self.model.obs_cov[1, 1, 0] = sigma_ec**2 self.model.state_cov[np.diag_indices(k_states) + (np.zeros(k_states, dtype=int), )] = [ sigma_v**2, sigma_e**2, 0, 0, sigma_w**2, sigma_vl**2 ] # Initialization initial_state = np.zeros((k_states, )) initial_state_cov = np.eye(k_states) * 100 # Initialization: modification if not alternate_timing: initial_state_cov = np.dot( np.dot(self.model.transition[:, :, 0], initial_state_cov), self.model.transition[:, :, 0].T) else: self.model.timing_init_filtered = True self.model.initialize_known(initial_state, initial_state_cov) def run_filter(self): # Filter the data self.results = self.model.filter() def test_loglike(self): assert_allclose( # self.results.llf_obs[self.true['start']:].sum(), self.results.llf_obs[0:].sum(), self.true['loglike'], rtol=1e-4, atol=1e-4) def test_filtered_state(self): assert_almost_equal( self.results.filtered_state[0][self.true['start']:], self.true_states.iloc[:, 0], 4) assert_almost_equal( self.results.filtered_state[1][self.true['start']:], self.true_states.iloc[:, 1], 4) assert_almost_equal( self.results.filtered_state[4][self.true['start']:], self.true_states.iloc[:, 2], 4) assert_almost_equal( self.results.filtered_state[5][self.true['start']:], self.true_states.iloc[:, 3], 4)
def test_predict(): # Tests of invalid calls to the predict function warnings.simplefilter("always") endog = np.ones((10, 1)) mod = Model(endog, k_states=1, initialization='approximate_diffuse') mod['design', :] = 1 mod['obs_intercept'] = np.zeros((1, 10)) mod['selection', :] = 1 mod['state_cov', :] = 1 # Check that we need both forecasts and predicted output for prediction mod.memory_no_forecast = True res = mod.filter() assert_raises(ValueError, res.predict) mod.memory_no_forecast = False mod.memory_no_predicted = True res = mod.filter() assert_raises(ValueError, res.predict) mod.memory_no_predicted = False # Now get a clean filter object res = mod.filter() # Check that start < 0 is an error assert_raises(ValueError, res.predict, start=-1) # Check that end < start is an error assert_raises(ValueError, res.predict, start=2, end=1) # Check that dynamic < 0 is an error assert_raises(ValueError, res.predict, dynamic=-1) # Check that dynamic > end is an warning with warnings.catch_warnings(record=True) as w: res.predict(end=1, dynamic=2) message = ('Dynamic prediction specified to begin after the end of' ' prediction, and so has no effect.') assert_equal(str(w[0].message), message) # Check that dynamic > nobs is an warning with warnings.catch_warnings(record=True) as w: res.predict(end=11, dynamic=11, obs_intercept=np.zeros((1, 1))) message = ('Dynamic prediction specified to begin during' ' out-of-sample forecasting period, and so has no' ' effect.') assert_equal(str(w[0].message), message) # Check for a warning when providing a non-used statespace matrix with warnings.catch_warnings(record=True) as w: res.predict(end=res.nobs + 1, design=True, obs_intercept=np.zeros((1, 1))) message = ('Model has time-invariant design matrix, so the design' ' argument to `predict` has been ignored.') assert_equal(str(w[0].message), message) # Check that an error is raised when a new time-varying matrix is not # provided assert_raises(ValueError, res.predict, end=res.nobs + 1) # Check that an error is raised when a non-two-dimensional obs_intercept # is given assert_raises(ValueError, res.predict, end=res.nobs + 1, obs_intercept=np.zeros(1)) # Check that an error is raised when an obs_intercept with incorrect length # is given assert_raises(ValueError, res.predict, end=res.nobs + 1, obs_intercept=np.zeros(2)) # Check that start=None gives start=0 and end=None gives end=nobs assert_equal(res.predict().forecasts.shape, (1, res.nobs)) # Check that dynamic=True begins dynamic prediction immediately # TODO just a smoke test res.predict(dynamic=True) # Check that full_results=True yields a SmootherResults object assert_equal(isinstance(res.predict(), PredictionResults), True) # Check that an error is raised when a non-two-dimensional obs_cov # is given # ...and... # Check that an error is raised when an obs_cov with incorrect length # is given mod = Model(endog, k_states=1, initialization='approximate_diffuse') mod['design', :] = 1 mod['obs_cov'] = np.zeros((1, 1, 10)) mod['selection', :] = 1 mod['state_cov', :] = 1 res = mod.filter() assert_raises(ValueError, res.predict, end=res.nobs + 1, obs_cov=np.zeros((1, 1))) assert_raises(ValueError, res.predict, end=res.nobs + 1, obs_cov=np.zeros((1, 1, 2)))
class Clark1989(object): """ Clark's (1989) bivariate unobserved components model of real GDP (as presented in Kim and Nelson, 1999) Tests two-dimensional observation data. Test data produced using GAUSS code described in Kim and Nelson (1999) and found at http://econ.korea.ac.kr/~cjkim/SSMARKOV.htm See `results.results_kalman_filter` for more information. """ def __init__(self, dtype=float, alternate_timing=False, **kwargs): self.true = results_kalman_filter.uc_bi self.true_states = pd.DataFrame(self.true['states']) # GDP and Unemployment, Quarterly, 1948.1 - 1995.3 data = pd.DataFrame( self.true['data'], index=pd.date_range('1947-01-01', '1995-07-01', freq='QS'), columns=['GDP', 'UNEMP'] )[4:] data['GDP'] = np.log(data['GDP']) data['UNEMP'] = (data['UNEMP']/100) k_states = 6 self.model = Model(data, k_states=k_states, **kwargs) # Statespace representation self.model.design[:, :, 0] = [[1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1]] self.model.transition[ ([0, 0, 1, 1, 2, 3, 4, 5], [0, 4, 1, 2, 1, 2, 4, 5], [0, 0, 0, 0, 0, 0, 0, 0]) ] = [1, 1, 0, 0, 1, 1, 1, 1] self.model.selection = np.eye(self.model.k_states) # Update matrices with given parameters (sigma_v, sigma_e, sigma_w, sigma_vl, sigma_ec, phi_1, phi_2, alpha_1, alpha_2, alpha_3) = np.array( self.true['parameters'], ) self.model.design[([1, 1, 1], [1, 2, 3], [0, 0, 0])] = [ alpha_1, alpha_2, alpha_3 ] self.model.transition[([1, 1], [1, 2], [0, 0])] = [phi_1, phi_2] self.model.obs_cov[1, 1, 0] = sigma_ec**2 self.model.state_cov[ np.diag_indices(k_states)+(np.zeros(k_states, dtype=int),)] = [ sigma_v**2, sigma_e**2, 0, 0, sigma_w**2, sigma_vl**2 ] # Initialization initial_state = np.zeros((k_states,)) initial_state_cov = np.eye(k_states)*100 # Initialization: modification if not alternate_timing: initial_state_cov = np.dot( np.dot(self.model.transition[:, :, 0], initial_state_cov), self.model.transition[:, :, 0].T ) else: self.model.timing_init_filtered = True self.model.initialize_known(initial_state, initial_state_cov) def run_filter(self): # Filter the data self.results = self.model.filter() def test_loglike(self): assert_allclose( # self.results.llf_obs[self.true['start']:].sum(), self.results.llf_obs[0:].sum(), self.true['loglike'], rtol=1e-4, atol=1e-4 ) def test_filtered_state(self): assert_almost_equal( self.results.filtered_state[0][self.true['start']:], self.true_states.iloc[:, 0], 4 ) assert_almost_equal( self.results.filtered_state[1][self.true['start']:], self.true_states.iloc[:, 1], 4 ) assert_almost_equal( self.results.filtered_state[4][self.true['start']:], self.true_states.iloc[:, 2], 4 ) assert_almost_equal( self.results.filtered_state[5][self.true['start']:], self.true_states.iloc[:, 3], 4 )