Ejemplo n.º 1
0
def test_simulated_disease():
    """ Test fit for simulated disease data"""

    # load model to test fitting
    dm = DiseaseJson(file('tests/test_disease_1.json').read())

    # filter and noise up data
    cov = .5
    
    data = []
    for d in dm.data:
        d['truth'] = d['value']
        if dismod3.utils.clean(d['gbd_region']) == 'north_america_high_income':
            if d['data_type'] == 'all-cause mortality data':
                data.append(d)
            else:
                se = (cov * d['value'])
                d['value'] = mc.rtruncnorm(d['truth'], se**-2, 0, np.inf)
                d['age_start'] -= 5
                d['age_end'] = d['age_start']+9
                d['age_weights'] = np.ones(d['age_end']-d['age_start']+1)
                d['age_weights'] /= float(len(d['age_weights']))

                d['standard_error'] = se

                data.append(d)

    dm.data = data
    
    # fit empirical priors and compare fit to data
    from dismod3 import neg_binom_model
    for rate_type in 'prevalence incidence remission excess-mortality'.split():
        neg_binom_model.fit_emp_prior(dm, rate_type, '/dev/null')
        check_emp_prior_fits(dm)


    # fit posterior
    delattr(dm, 'vars')  # remove vars so that gbd_disease_model creates its own version
    from dismod3 import gbd_disease_model
    keys = dismod3.utils.gbd_keys(region_list=['north_america_high_income'],
                                  year_list=[1990], sex_list=['male'])
    gbd_disease_model.fit(dm, method='map', keys=keys, verbose=1)     ## first generate decent initial conditions
    gbd_disease_model.fit(dm, method='mcmc', keys=keys, iter=1000, thin=5, burn=5000, verbose=1, dbname='/dev/null')     ## then sample the posterior via MCMC


    print 'error compared to the noisy data (coefficient of variation = %.2f)' % cov
    check_posterior_fits(dm)


    for d in dm.data:
        d['value'] = d['truth']
        d['age_start'] += 5
        d['age_end'] = d['age_start']
        d['age_weights'] = np.ones(d['age_end']-d['age_start']+1)
        d['age_weights'] /= float(len(d['age_weights']))

    print 'error compared to the truth'
    check_posterior_fits(dm)

    return dm
Ejemplo n.º 2
0
def test_hep_c():
    """ Test fit for subset of hep_c data

    data is filtered to include only prevalence with
    region == 'europe_western' and sex == 'all'
    """

    # load model to test fitting
    dm = DiseaseJson(file('tests/hep_c_europe_western.json').read())

    # fit empirical priors
    neg_binom_model.fit_emp_prior(dm, 'prevalence', '/dev/null')

    # fit posterior
    delattr(dm, 'vars')  # remove vars so that gbd_disease_model creates its own version
    from dismod3 import gbd_disease_model
    keys = dismod3.utils.gbd_keys(region_list=['europe_western'],
                                  year_list=[1990], sex_list=['male'])
    gbd_disease_model.fit(dm, method='map', keys=keys, verbose=1)     ## first generate decent initial conditions
    gbd_disease_model.fit(dm, method='mcmc', keys=keys, iter=1000, thin=5, burn=5000, verbose=1, dbname='/dev/null')     ## then sample the posterior via MCMC

    # check that prevalence is smooth near age zero
    prediction = dm.get_mcmc('mean', 'prevalence+europe_western+1990+male')
    print prediction
    return dm
    assert prediction[100] < .1, 'prediction should not shoot up in oldest ages'
Ejemplo n.º 3
0
def test_dismoditis_wo_prevalence():
    """ Test fit for simple example"""

    # load model to test fitting
    dm = DiseaseJson(file('tests/dismoditis.json').read())

    # remove all prevalence data
    dm.data = [d for d in dm.data if d['parameter'] != 'prevalence data']

    # fit empirical priors
    neg_binom_model.fit_emp_prior(dm, 'incidence', '/dev/null')
    check_emp_prior_fits(dm)
    neg_binom_model.fit_emp_prior(dm, 'excess-mortality', '/dev/null')
    check_emp_prior_fits(dm)

    # fit posterior
    delattr(dm, 'vars')  # remove vars so that gbd_disease_model creates its own version
    from dismod3 import gbd_disease_model
    keys = dismod3.utils.gbd_keys(region_list=['asia_southeast'],
                                  year_list=[1990], sex_list=['male'])
    #gbd_disease_model.fit(dm, method='map', keys=keys, verbose=1)     ## first generate decent initial conditions
    gbd_disease_model.fit(dm, method='mcmc', keys=keys, iter=1000, thin=5, burn=5000, verbose=1, dbname='/dev/null')     ## then sample the posterior via MCMC

    # compare fit to data
    check_posterior_fits(dm)
Ejemplo n.º 4
0
def test_dismoditis():
    """ Test fit for simple example"""

    # load model to test fitting
    dm = DiseaseJson(file('tests/dismoditis.json').read())
    for d in dm.data:
        d['standard_error'] = .01
    # fit empirical priors
    neg_binom_model.fit_emp_prior(dm, 'prevalence', '/dev/null')
    check_emp_prior_fits(dm)
    neg_binom_model.fit_emp_prior(dm, 'incidence', '/dev/null')
    check_emp_prior_fits(dm)
    neg_binom_model.fit_emp_prior(dm, 'excess-mortality', '/dev/null')
    check_emp_prior_fits(dm)

    # fit posterior where there is no data
    delattr(dm, 'vars')  # remove vars so that gbd_disease_model creates its own version
    from dismod3 import gbd_disease_model
    keys = dismod3.utils.gbd_keys(region_list=['north_america_high_income'],
                                  year_list=[1990], sex_list=['male'])
    gbd_disease_model.fit(dm, method='map', keys=keys, verbose=1)     ## first generate decent initial conditions
    gbd_disease_model.fit(dm, method='mcmc', keys=keys, iter=1000, thin=5, burn=5000, verbose=1, dbname='/dev/null')     ## then sample the posterior via MCMC
    check_posterior_fits(dm)
    
    # check that prevalence is smooth near age zero
    prediction = dm.get_mcmc('mean', 'prevalence+north_america_high_income+1990+male')
    assert prediction[1]-prediction[0] < .01, 'prediction should be smooth near zero'
Ejemplo n.º 5
0
def test_increasing_prior():
    """ Test fit for empirical prior to data showing a linearly increasing age pattern with a fine age mesh"""

    # load model to test fitting
    dm = DiseaseJson(file('tests/single_low_noise.json').read())

    dm.params['global_priors']['increasing']['incidence']['age_end'] = 100

    # create linear age pattern data
    import copy
    d = dm.data.pop()
    for a in range(10, 100, 10):
        d = copy.copy(d)
        d['age_start'] = a
        d['age_end'] = a
        d['parameter_value'] = .01*a
        d['value'] = .01*a
        dm.data.append(d)

    # fit empirical priors
    from dismod3 import neg_binom_model
    neg_binom_model.fit_emp_prior(dm, 'prevalence', '/dev/null')

    # compare fit to data, and check that it is increasing
    check_emp_prior_fits(dm)
    assert np.all(np.diff(dm.get_mcmc('emp_prior_mean', dismod3.utils.gbd_key_for('prevalence', 'asia_southeast', 1990, 'male'))) >= 0), 'expert prior says increasing'
Ejemplo n.º 6
0
def test_ihd():
    """ Test fit for subset of ihd data

    data is filtered to include only data for
    region == 'europe_western' and sex == 'male'
    """

    # load model to test fitting
    dm = DiseaseJson(file('tests/ihd.json').read())

    fit_model(dm, 'europe_western', 1990, 'male')

    # check that prevalence is smooth around age 90
    prediction = dm.get_mcmc('mean', 'prevalence+europe_western+1990+male')
    print prediction
    assert prediction[89]/prediction[90] < .05, 'prediction should not change greatly at age 90'

    return dm
Ejemplo n.º 7
0
def test_opi():
    """ Test fit for subset of opi_dep data

    data is filtered to include only data for
    region == 'europe_central' and sex == 'male'
    """

    # load model to test fitting
    dm = DiseaseJson(file('tests/opi.json').read())

    dm.params['global_priors']['decreasing']['prevalence']['age_start'] = 60
    dm.params['global_priors']['decreasing']['prevalence']['age_end'] = 100

    fit_model(dm, 'europe_central', 1990, 'male')

    # check that prevalence is smooth near age zero
    prediction = dm.get_mcmc('mean', 'prevalence+europe_central+1990+male')
    print prediction
    assert prediction[80] > prediction[100], 'prediction should decrease at oldest ages'

    return dm
Ejemplo n.º 8
0
def test_mesh_refinement():
    """ Compare fit for coarse and fine age mesh"""

    # load model and fit it
    dm1 = DiseaseJson(file('tests/single_low_noise.json').read())
    dm1.set_param_age_mesh(arange(0,101,20))
    from dismod3 import neg_binom_model
    neg_binom_model.fit_emp_prior(dm1, 'prevalence', '/dev/null')

    # load another copy and fit it with a finer age mesh
    dm2 = DiseaseJson(file('tests/single_low_noise.json').read())
    dm2.set_param_age_mesh(arange(0,101,5))
    from dismod3 import neg_binom_model
    neg_binom_model.fit_emp_prior(dm2, 'prevalence', '/dev/null')

    # compare fits
    p1 = dm1.get_mcmc('emp_prior_mean', dismod3.utils.gbd_key_for('prevalence', 'asia_southeast', 1990, 'male'))
    p2 = dm2.get_mcmc('emp_prior_mean', dismod3.utils.gbd_key_for('prevalence', 'asia_southeast', 1990, 'male'))
    print p1[::20]
    print p2[::20]
    assert np.all(abs(p1[::20] / p2[::20] - 1.) < .05), 'Prediction should be closer to data'
Ejemplo n.º 9
0
def fit_simulated_disease(n=300, cv=2.):
    """ Test fit for simulated disease data with noise and missingness"""

    # load model to test fitting
    dm = DiseaseJson(file('tests/simulation_gold_standard.json').read())
    
    # adjust any priors and covariates as desired
    dm.set_param_age_mesh(arange(0,101,2))
    for type in 'incidence prevalence remission excess_mortality'.split():
        dm.params['global_priors']['heterogeneity'][type] = 'Very'
        dm.params['covariates']['Country_level']['LDI_id']['rate']['value'] = 0
    
    # filter and noise up data
    mort_data = []
    all_data = []
    for d in dm.data:
        d['truth'] = d['value']
        d['age_weights'] = array([1.])
        if d['data_type'] == 'all-cause mortality data':
            mort_data.append(d)
        else:
            if d['value'] > 0:
                se = (cv / 100.) * d['value']
                Y_i = mc.rtruncnorm(d['truth'], se**-2, 0, np.inf)
                d['value'] = Y_i
                d['standard_error'] = se
                d['effective_sample_size'] = Y_i * (1-Y_i) / se**2


            all_data.append(d)
    sampled_data = random.sample(all_data, n) + mort_data
    dm.data = sampled_data

    # fit empirical priors and compare fit to data
    from dismod3 import neg_binom_model
    for rate_type in 'prevalence incidence remission excess-mortality'.split():
        #neg_binom_model.fit_emp_prior(dm, rate_type, iter=1000, thin=1, burn=0, dbname='/dev/null')
        neg_binom_model.fit_emp_prior(dm, rate_type, iter=30000, thin=15, burn=15000, dbname='/dev/null')
        check_emp_prior_fits(dm)


    # fit posterior
    delattr(dm, 'vars')  # remove vars so that gbd_disease_model creates its own version
    from dismod3 import gbd_disease_model
    keys = dismod3.utils.gbd_keys(region_list=['north_america_high_income'],
                                  year_list=[1990], sex_list=['male'])
    gbd_disease_model.fit(dm, method='map', keys=keys, verbose=1)     ## first generate decent initial conditions
    gbd_disease_model.fit(dm, method='mcmc', keys=keys, iter=30000, thin=15, burn=15000, verbose=1, dbname='/dev/null')     ## then sample the posterior via MCMC
    #gbd_disease_model.fit(dm, method='mcmc', keys=keys, iter=1000, thin=1, burn=0, verbose=1, dbname='/dev/null')     ## fast for dev


    print 'error compared to the noisy data (coefficient of variation = %.2f)' % cv
    check_posterior_fits(dm)

    dm.data = all_data
    for d in dm.data:
        if d['data_type'] != 'all-cause mortality data':
            d['noisy_data'] = d['value']
            d['value'] = d['truth']

    print 'error compared to the truth'
    are, coverage = check_posterior_fits(dm)
    print
    print 'Median Absolute Relative Error of Posterior Predictions:', median(are)
    print 'Pct coverage:', 100*mean(coverage)
    f = open('score_%d_%f.txt' % (n, cv), 'a')
    f.write('%10.10f,%10.10f\n' % (median(are), mean(coverage)))
    f.close()

    dm.all_data = all_data
    dm.data = sampled_data
    for d in dm.data:
        if d['data_type'] != 'all-cause mortality data':
            d['value'] = d['noisy_data']

    generate_figure(dm, n, cv)

    return dm
Ejemplo n.º 10
0
        
        col_names = sorted(data_dict_for_csv(data[0]).keys())
        
        csv_f.writerow(col_names)
        for d in data:
            dd = data_dict_for_csv(d)
            csv_f.writerow([dd[c] for c in col_names])
        f_file.close()
    except:
        print "couldn't write file"

# create the disease model based on this data
dm = DiseaseJson(json.dumps({'params':
                                 {"id": 1,
                                  "sex": "male",
                                  "region": "asia_southeast",
                                  "year": "2005",
                                  "condition": "type_ii_diabetes"},
                             "data": data}))

for year in [1990, 2005]:
    for sex in ['male', 'female']:
        key = dismod3.utils.gbd_key_for('%s', dm.get_region(), year, sex)
        dm.set_initial_value(key % 'all-cause_mortality', m)

        # set semi-informative priors on the rate functions
        dm.set_priors(key % 'remission', ' zero 0 100, ')
        dm.set_priors(key % 'case-fatality', ' zero 0 10, smooth 100, ')
        dm.set_priors(key % 'incidence', ' zero 0 2, smooth 100, increasing 50 100, ')
        dm.set_priors(key % 'prevalence', ' zero 0 2, smooth 100, ')
Ejemplo n.º 11
0
        csv_f.writerow(col_names)
        for d in data:
            dd = data_dict_for_csv(d)
            csv_f.writerow([dd[c] for c in col_names])
        f_file.close()
    except:
        print "couldn't write file"

# create the disease model based on this data
dm = DiseaseJson(
    json.dumps({
        'params': {
            "id": 1,
            "sex": "male",
            "region": "asia_southeast",
            "year": "2005",
            "condition": "type_ii_diabetes"
        },
        "data": data
    }))

for year in [1990, 2005]:
    for sex in ['male', 'female']:
        key = dismod3.utils.gbd_key_for('%s', dm.get_region(), year, sex)
        dm.set_initial_value(key % 'all-cause_mortality', m)

        # set semi-informative priors on the rate functions
        dm.set_priors(key % 'remission', ' zero 0 100, ')
        dm.set_priors(key % 'case-fatality', ' zero 0 10, smooth 100, ')
        dm.set_priors(key % 'incidence',