Ejemplo n.º 1
0
def generate_disease_data(condition, cov):
    """ Generate csv files with gold-standard disease data,
    and somewhat good, somewhat dense disease data, as might be expected from a
    condition that is carefully studied in the literature
    """

    age_len = dismod3.MAX_AGE
    ages = np.arange(age_len, dtype='float')

    # incidence rate
    i0 = .005 + .02 * mc.invlogit((ages - 44) / 3)
    #i0 = np.maximum(0., .001 * (-.125 + np.ones_like(ages) + (ages / age_len)**2.))

    # remission rate
    #r = 0. * ages
    r = .1 * np.ones_like(ages)

    # excess-mortality rate
    #f_init = .085 * (ages / 100) ** 2.5
    SMR = 3. * np.ones_like(ages) - ages / age_len

    # all-cause mortality-rate
    mort = dismod3.get_disease_model('all-cause_mortality')

    #age_intervals = [[a, a+9] for a in range(0, dismod3.MAX_AGE-4, 10)] + [[0, 100] for ii in range(1)]
    age_intervals = [[a, a] for a in range(0, dismod3.MAX_AGE, 1)]

    # TODO:  take age structure from real data
    sparse_intervals = dict([[
        region,
        random.sample(age_intervals,
                      (ii**3 * len(age_intervals)) / len(countries_for)**3 / 1)
    ] for ii, region in enumerate(countries_for)])
    dense_intervals = dict(
        [[region, random.sample(age_intervals,
                                len(age_intervals) / 2)]
         for ii, region in enumerate(countries_for)])

    gold_data = []
    noisy_data = []

    for ii, region in enumerate(sorted(countries_for)):
        if region == 'world':
            continue

        print region
        sys.stdout.flush()

        # introduce unexplained regional variation
        #i = i0 * (1 + float(ii) / 21)

        # or not
        i = i0

        for year in [1990, 2005]:
            for sex in ['male', 'female']:

                param_type = 'all-cause_mortality'
                key = dismod3.gbd_key_for(param_type, region, year, sex)
                m_all_cause = mort.mortality(key, mort.data)

                # calculate excess-mortality rate from smr
                f = (SMR - 1.) * m_all_cause

                ## compartmental model (bins S, C, D, M)
                import scipy.linalg
                from dismod3 import NEARLY_ZERO
                from dismod3.utils import trim

                SCDM = np.zeros([4, age_len])
                p = np.zeros(age_len)
                m = np.zeros(age_len)

                SCDM[0, 0] = 1.
                SCDM[1, 0] = 0.
                SCDM[2, 0] = 0.
                SCDM[3, 0] = 0.

                p[0] = SCDM[1, 0] / (SCDM[0, 0] + SCDM[1, 0] + NEARLY_ZERO)
                m[0] = trim(m_all_cause[0] - f[0] * p[0], NEARLY_ZERO,
                            1 - NEARLY_ZERO)

                for a in range(age_len - 1):
                    A = [[-i[a] - m[a], r[a], 0., 0.],
                         [i[a], -r[a] - m[a] - f[a], 0., 0.],
                         [m[a], m[a], 0., 0.], [0., f[a], 0., 0.]]

                    SCDM[:, a + 1] = np.dot(scipy.linalg.expm(A), SCDM[:, a])

                    p[a + 1] = SCDM[1, a + 1] / (SCDM[0, a + 1] +
                                                 SCDM[1, a + 1] + NEARLY_ZERO)
                    m[a + 1] = m_all_cause[a + 1] - f[a + 1] * p[a + 1]

                # duration = E[time in bin C]
                hazard = r + m + f
                pr_not_exit = np.exp(-hazard)
                X = np.empty(len(hazard))
                X[-1] = 1 / hazard[-1]
                for ii in reversed(range(len(X) - 1)):
                    X[ii] = (pr_not_exit[ii] *
                             (X[ii + 1] + 1)) + (1 / hazard[ii] *
                                                 (1 - pr_not_exit[ii]) -
                                                 pr_not_exit[ii])

                country = countries_for[region][0]
                params = dict(age_intervals=age_intervals,
                              condition=condition,
                              gbd_region=region,
                              country=country,
                              year=year,
                              sex=sex,
                              effective_sample_size=1000)

                params['age_intervals'] = [[0, 99]]
                generate_and_append_data(gold_data, 'prevalence data', p,
                                         **params)
                generate_and_append_data(gold_data, 'incidence data', i,
                                         **params)
                generate_and_append_data(gold_data, 'excess-mortality data', f,
                                         **params)
                generate_and_append_data(gold_data, 'remission data', r,
                                         **params)
                generate_and_append_data(gold_data, 'duration data', X,
                                         **params)

                # TODO: use this approach to age standardize all gold data, and then change it to get iX as a direct sum
                params['age_intervals'] = [[0, 99]]
                iX = i * X * (1 - p) * regional_population(key)
                generate_and_append_data(gold_data, 'incidence_x_duration', iX,
                                         **params)

                params['effective_sample_size'] = 1000
                params['cov'] = 0.
                params['age_intervals'] = age_intervals
                generate_and_append_data(noisy_data, 'prevalence data', p,
                                         **params)
                generate_and_append_data(noisy_data, 'excess-mortality data',
                                         f, **params)
                generate_and_append_data(noisy_data, 'remission data', r,
                                         **params)
                generate_and_append_data(noisy_data, 'incidence data', i,
                                         **params)

    col_names = sorted(data_dict_for_csv(gold_data[0]).keys())

    f_file = open(OUTPUT_PATH + '%s_gold.tsv' % condition, 'w')
    csv_f = csv.writer(f_file, dialect='excel-tab')
    csv_f.writerow(col_names)
    for d in gold_data:
        dd = data_dict_for_csv(d)
        csv_f.writerow([dd[c] for c in col_names])
    f_file.close()

    f_name = OUTPUT_PATH + '%s_data.tsv' % condition
    f_file = open(f_name, 'w')
    csv_f = csv.writer(f_file, dialect='excel-tab')
    csv_f.writerow(col_names)

    for d in noisy_data:
        dd = data_dict_for_csv(d)
        csv_f.writerow([dd[c] for c in col_names])
    f_file.close()

    # upload data file
    from dismod3.disease_json import dismod_server_login, twc, DISMOD_BASE_URL
    dismod_server_login()
    twc.go(DISMOD_BASE_URL + 'dismod/data/upload/')
    twc.formvalue(1, 'tab_separated_values', open(f_name).read())

    # TODO: find or set the model number for this model, set the
    # expert priors and covariates, merge the covariate data into the
    # model, and add the "ground truth" to the disease json

    try:
        url = twc.submit()
    except Exception, e:
        print e
Ejemplo n.º 2
0
Archivo: hep_c.py Proyecto: flaxter/gbd

if __name__ == "__main__":
    dm_egypt = hep_c_fit(["egypt"], [1990, 2005], egypt_flag=True)
    dm_na_me = hep_c_fit(["north_africa_middle_east"], [1990, 2005])

    # combine prevalence curves for egypt and rest of north africa
    for y in [1990, 2005]:
        for s in ["male", "female"]:
            key = "prevalence+egypt+%d+%s" % (y, s)
            prev_1 = neg_binom_model.calc_rate_trace(dm_egypt, key, dm_egypt.vars[key])
            pop_1 = neg_binom_model.population_by_age[("EGY", str(y), s)]

            key = "prevalence+north_africa_middle_east+%d+%s" % (y, s)
            prev_0 = neg_binom_model.calc_rate_trace(dm_na_me, key, dm_na_me.vars[key])
            pop_0 = neg_binom_model.regional_population(key)

            # generate population weighted average
            prev = (prev_0 * (pop_0 - pop_1) + prev_1 * pop_1) / pop_0
            neg_binom_model.store_mcmc_fit(dm_na_me, key, None, prev)

            # generate plots of results
            dismod3.tile_plot_disease_model(dm_na_me, [key], defaults={"ymax": 0.15, "alpha": 0.5})
            dm_na_me.savefig("dm-%d-posterior-na_me_w_egypt.%f.png" % (dm_na_me.id, random()))

            # save results
            dismod3.post_disease_model(dm_na_me)

    dm = hep_c_fit(
        "caribbean latin_america_tropical latin_america_andean latin_america_central latin_america_southern".split(),
        [1990, 2005],
Ejemplo n.º 3
0
def generate_disease_data(condition, cov):
    """ Generate csv files with gold-standard disease data,
    and somewhat good, somewhat dense disease data, as might be expected from a
    condition that is carefully studied in the literature
    """
    
    age_len = dismod3.MAX_AGE
    ages = np.arange(age_len, dtype='float')

    # incidence rate
    i0 = .005 + .02 * mc.invlogit((ages - 44) / 3)
    #i0 = np.maximum(0., .001 * (-.125 + np.ones_like(ages) + (ages / age_len)**2.))

    # remission rate
    #r = 0. * ages
    r = .1 * np.ones_like(ages)

    # excess-mortality rate
    #f_init = .085 * (ages / 100) ** 2.5
    SMR = 3. * np.ones_like(ages) - ages / age_len

    # all-cause mortality-rate
    mort = dismod3.get_disease_model('all-cause_mortality')

    #age_intervals = [[a, a+9] for a in range(0, dismod3.MAX_AGE-4, 10)] + [[0, 100] for ii in range(1)]
    age_intervals = [[a, a] for a in range(0, dismod3.MAX_AGE, 1)]
    
    # TODO:  take age structure from real data
    sparse_intervals = dict([[region, random.sample(age_intervals, (ii**3 * len(age_intervals)) / len(countries_for)**3 / 1)] for ii, region in enumerate(countries_for)])
    dense_intervals = dict([[region, random.sample(age_intervals, len(age_intervals)/2)] for ii, region in enumerate(countries_for)])

    gold_data = []
    noisy_data = []
            
    for ii, region in enumerate(sorted(countries_for)):
        if region == 'world':
            continue
        
        print region
        sys.stdout.flush()

        # introduce unexplained regional variation
        #i = i0 * (1 + float(ii) / 21)

        # or not
        i = i0
        
        for year in [1990, 2005]:
            for sex in ['male', 'female']:

                param_type = 'all-cause_mortality'
                key = dismod3.gbd_key_for(param_type, region, year, sex)
                m_all_cause = mort.mortality(key, mort.data)

                # calculate excess-mortality rate from smr
                f = (SMR - 1.) * m_all_cause


                ## compartmental model (bins S, C, D, M)
                import scipy.linalg
                from dismod3 import NEARLY_ZERO
                from dismod3.utils import trim

                SCDM = np.zeros([4, age_len])
                p = np.zeros(age_len)
                m = np.zeros(age_len)

                SCDM[0,0] = 1.
                SCDM[1,0] = 0.
                SCDM[2,0] = 0.
                SCDM[3,0] = 0.

                p[0] = SCDM[1,0] / (SCDM[0,0] + SCDM[1,0] + NEARLY_ZERO)
                m[0] = trim(m_all_cause[0] - f[0] * p[0], NEARLY_ZERO, 1-NEARLY_ZERO)

                for a in range(age_len - 1):
                    A = [[-i[a]-m[a],  r[a]          , 0., 0.],
                         [ i[a]     , -r[a]-m[a]-f[a], 0., 0.],
                         [      m[a],       m[a]     , 0., 0.],
                         [        0.,            f[a], 0., 0.]]

                    SCDM[:,a+1] = np.dot(scipy.linalg.expm(A), SCDM[:,a])

                    p[a+1] = SCDM[1,a+1] / (SCDM[0,a+1] + SCDM[1,a+1] + NEARLY_ZERO)
                    m[a+1] = m_all_cause[a+1] - f[a+1] * p[a+1]


                # duration = E[time in bin C]
                hazard = r + m + f
                pr_not_exit = np.exp(-hazard)
                X = np.empty(len(hazard))
                X[-1] = 1 / hazard[-1]
                for ii in reversed(range(len(X)-1)):
                    X[ii] = (pr_not_exit[ii] * (X[ii+1] + 1)) + (1 / hazard[ii] * (1 - pr_not_exit[ii]) - pr_not_exit[ii])

                country = countries_for[region][0]
                params = dict(age_intervals=age_intervals, condition=condition, gbd_region=region,
                              country=country, year=year, sex=sex, effective_sample_size=1000)

                params['age_intervals'] = [[0,99]]
                generate_and_append_data(gold_data, 'prevalence data', p, **params)
                generate_and_append_data(gold_data, 'incidence data', i, **params)
                generate_and_append_data(gold_data, 'excess-mortality data', f, **params)
                generate_and_append_data(gold_data, 'remission data', r, **params)
                generate_and_append_data(gold_data, 'duration data', X, **params)

                # TODO: use this approach to age standardize all gold data, and then change it to get iX as a direct sum
                params['age_intervals'] = [[0,99]]
                iX = i * X * (1-p) * regional_population(key)
                generate_and_append_data(gold_data, 'incidence_x_duration', iX, **params)
                

                params['effective_sample_size'] = 1000
                params['cov'] = 0.
                params['age_intervals'] = age_intervals
                generate_and_append_data(noisy_data, 'prevalence data', p, **params)
                generate_and_append_data(noisy_data, 'excess-mortality data', f, **params)
                generate_and_append_data(noisy_data, 'remission data', r, **params)
                generate_and_append_data(noisy_data, 'incidence data', i, **params)



    col_names = sorted(data_dict_for_csv(gold_data[0]).keys())

    f_file = open(OUTPUT_PATH + '%s_gold.tsv' % condition, 'w')
    csv_f = csv.writer(f_file, dialect='excel-tab')
    csv_f.writerow(col_names)
    for d in gold_data:
        dd = data_dict_for_csv(d)
        csv_f.writerow([dd[c] for c in col_names])
    f_file.close()

    f_name = OUTPUT_PATH + '%s_data.tsv' % condition
    f_file = open(f_name, 'w')
    csv_f = csv.writer(f_file, dialect='excel-tab')
    csv_f.writerow(col_names)

    for d in noisy_data:
        dd = data_dict_for_csv(d)
        csv_f.writerow([dd[c] for c in col_names])
    f_file.close()

    # upload data file
    from dismod3.disease_json import dismod_server_login, twc, DISMOD_BASE_URL
    dismod_server_login()
    twc.go(DISMOD_BASE_URL + 'dismod/data/upload/')
    twc.formvalue(1, 'tab_separated_values', open(f_name).read())

    # TODO: find or set the model number for this model, set the
    # expert priors and covariates, merge the covariate data into the
    # model, and add the "ground truth" to the disease json

    try:
        url = twc.submit()
    except Exception, e:
        print e