Ejemplo n.º 1
0
def ns_kriging_mm(data, stations, bp, x_opt_st, mod_opt_st, targets,
               candidate_var=[variogram_fit.spherical_sv,],
               candidate_tag=['Spherical',], verbose=False, 
               ncs=3, krig_type='Ord'):
    '''
    t1_var : list
        Parameters of the tier 1 variogram (variogram of the kriging 
        parameters) to be interpolated at each interval
        
    the method uses Ordinary Kriging using multi-precipitation model
    '''
    if krig_type is 'Ord':
        ord_krig=True
        
    # Set the intervals
    bp = bp[:]
    bp.insert(0, np.min(data))
    bp.append(np.max(data))
    intervals = [[bp[i], bp[i+1]] for i in xrange(len(bp)-1)]
    intervals[-1][1] = intervals[-1][1]+0.0001
    
    # Make separation of the regime for each record
    cond_map = np.zeros_like(data)
    for st_i in xrange(len(stations)):
        for n in xrange(len(data)):
            for i in xrange(len(intervals)):
                if data[n, st_i] >= min(intervals[i]) and \
                   data[n, st_i] < max(intervals[i]):
                    cond_map[n, st_i] = i
    
    # Get distance between stations
    dist_mat = np.array(dist.between(stations))
    
    #initialisation of lists for each target
    zz = np.zeros([len(data), len(targets)])
    ssp = np.zeros([len(data), len(targets)])
    
    for tarcoun in xrange(len(targets)):
        
        #Select invidual target for itnerpolation
        tar = targets[tarcoun]
        
        ##Select the closest NCS elements
        #Calculate distance of all stations
        das = np.array(dist.target([tar,], stations)).flatten()
        
        #Select index of the closest stations
        cs = list(das.argsort()[:ncs])
        
        #Reduction of precipitation and sensor position matrices      
        red_data = data[:, cs]
        red_dist = dist_mat[cs][:,cs]
        red_cond_map = cond_map[:, cs]
        red_xopt = x_opt_st[cs]

        # Pre-cooked all zeros case
        if ord_krig:
            cov_mat_zeros = np.ones([ncs+1, ncs+1])
            cov_mat_zeros[-1, -1] = 0
        else:
            cov_mat_zeros = np.ones([ncs, ncs])
            
        for ii in xrange(ncs):
            for jj in xrange(ncs):
                # TODO include different variogram type where 0 is
                cov_mat_zeros[ii, jj] = candidate_var[0](red_dist[ii, jj], 
                                                         red_xopt[ii, 0])
        
        if ord_krig:
            cov_tar_zeros = np.ones([ncs+1, 1])
        else:
            cov_tar_zeros = np.ones([ncs, 1])
            
        for ii in xrange(ncs):
            cov_tar_zeros[ii, 0] = candidate_var[0](das[cs[ii]], 
                                                    red_xopt[ii, 0])
        
        # Inverse of extended covariance matrix
        inv_cov_mat_zeros = np.linalg.inv(cov_mat_zeros)
                
        # Kriging weights
        w_vec = np.dot(inv_cov_mat_zeros, cov_tar_zeros)
        
        # Interpolation variance and Kriging system solution
        if ord_krig:
            sp_zeros = (np.max(cov_mat_zeros) 
                     - (np.sum(w_vec * cov_tar_zeros + w_vec[-1][0])))
        else:
            sp_zeros = (np.max(cov_mat_zeros) 
                     - (np.dot(np.transpose(w_vec), cov_tar_zeros)[0][0]))
        
        for t in xrange(len(data)):
            
            # If there is some precipitation data
            if np.max(red_data[t, :]) != 0:
                ## Here the interpolation is made for each of the time steps at 
                ## each locatiom
                #Make covariance matrix between stations in the neighborhoud (K)
                if ord_krig:
                    cov_mat = np.ones([ncs+1, ncs+1])
                    cov_mat[-1, -1] = 0
                else:
                    cov_mat = np.ones([ncs, ncs])
                
    
                # Construct Covariance Matrix between stations 
                # for each precipitation event                
                for ii in xrange(ncs):
                    for jj in xrange(ncs):
                        # TODO include different variogram type where 0 is
                        cov_mat[ii, jj] = candidate_var[0](red_dist[ii, jj], 
                                        red_xopt[ii, int(red_cond_map[t, ii])])
                
                # Fix maximum diagonal element to maximum of the variogram
                # To force positive eigenvalues
                for ii in xrange(ncs):
                    cov_mat[ii, ii] = np.max(cov_mat)
                
                # Simmetrise using the average bi-directional covariance matrix
                cov_mat = 0.5*(cov_mat + np.transpose(cov_mat))
                
                # Construct covariance towards target
                if ord_krig:
                    cov_tar = np.ones([ncs+1, 1])
                else:
                    cov_tar = np.ones([ncs, 1])
                    
                for ii in xrange(ncs):
                    cov_tar[ii, 0] = candidate_var[0](das[cs[ii]], 
                                     red_xopt[ii, int(red_cond_map[t, ii])])
                
                ## Solve the Kriging system
                # Invert the covariance matrix
                inv_cov_mat = np.linalg.inv(cov_mat)
                
                # Kriging weights
                w_vec = np.dot(inv_cov_mat, cov_tar)
                                
                # Interpolation variance and Kriging system solution
                if ord_krig:
                    z_temp = np.dot(np.transpose(w_vec[:-1]), 
                                    np.reshape(red_data[t, :], [-1,1]))[0][0]
                    #sp_temp = (np.max(cov_mat) 
                    #           - (np.sum(w_vec * cov_tar + w_vec[-1][0])))
                    sp_temp = (np.max(cov_mat) 
                               - (np.sum(w_vec * cov_tar) + w_vec[-1][0]))
                else:
                    z_temp = np.dot(np.transpose(w_vec), 
                                    np.reshape(red_data[t, :], [-1,1]))[0][0]
                    sp_temp = np.max(cov_mat) - (np.sum(w_vec * cov_tar))

                # Appending of solutions
                ssp[t, tarcoun] = sp_temp
                zz[t, tarcoun] = z_temp
                                
            else:
                ssp[t, tarcoun] = sp_zeros
                zz[t, tarcoun] = 0
            
            if verbose: 
                print ('Finished step {0}/{1} at {2}'.format(n, len(data), 
                                                                 ctime()))

    return zz, ssp
Ejemplo n.º 2
0
def krig(MaxDist, targets, stations, records, record_covariance_matrix, ModOpt, 
         xopt, candidate_sv, tmin=0, tmax='def', MinNumSt='def', 
         krig_type='Sim', normalisation=False, m_error=None):
    '''
    Parsing of data for Kriging interpolation. This function contains\
    execution of interpolation as well. \n
    Parameters
    ----------
        **MaxDist** -- Initial search radius for nearby stations \n
        **targets** -- Points of interest to interpolate (targets) ``[t,2]`` \n
        **stations** -- Gauge location for interpolation ``[x,2]`` \n
        **records** -- Precipitation register for gauges ``[n,x]`` \n
        **record_covariance_matrix** -- Gauge records covariance matrix ``[x,x]`` \n
        **ModOpt** -- pointer to optimal semivariogram model \n
        **xopt** -- vector with optimal semivariogram parameters ``[5]`` \n
        **candidate_sv** -- Array with pointer to functions in variogram_fit module
            \n
        **tmin** -- Initial time step to be interpolated \n
        **tmax** -- Final time step to be interpolated \n
        **MinNumSt** -- Minimum number of stations within the search radius \n
        **krig_type** -- Type of Kriging to be used. 'Sim' for Simple and 'Ord'\
            for Ordinary Kriging
        **normalisation** -- Boolean. If true, then the variable is normalised\
             in the neighbourhood of the variable
        **m_error -- cotains the variance in the measurement error
            
    
    Returns
    -------
        **Z** -- Interpolation for each target and time step ``[n,t]`` \n
        **SP** -- Interpolation variance field ``[t,1]``\n
        **ZAvg** -- Average of interpolated field ``[n,1]``
    '''
    #print (MinNumSt)
    if MinNumSt is 'def':
        MinNumSt = len(stations)
    
    if MinNumSt >= len(stations):
        print('Number of stations should be larger than number of \
               minimum stations. Set to all stations')
        MinNumSt = len(stations)
    
    if tmax == 'def':
        tmax = len(records)
    tmin = int(tmin)
    tmax = int(tmax)
    PrecSec = records[tmin:tmax]
    
    if m_error is None:
        m_error = np.zeros([len(PrecSec), len(stations)])
    else:
        m_error = m_error[tmin:tmax]
    
    # Reduce measurements to relevant locations for the targets
    Z = []
    SP = []
    for kk in xrange(len(targets)):
        # Check if there are enough stations for interpolation, otherwise,
        # increase search radius
        #targets_dt = dist.target(stations, [targets[kk]])[0]
        #TNS = 0
        #MaxDist2 = MaxDist    
        das = np.array(dist.target([targets[kk],], stations)).flatten()
        
        #Select index of the closest stations
        cs = list(das.argsort()[:MinNumSt])
        fs = list(das.argsort()[MinNumSt:])
        selected_stations = stations[cs]
        
        
        # Reduction of relevant stations (reduced data and cov matrices)            
        RedLoc = np.delete(stations, fs, 0)
        reduced_records = np.delete(PrecSec, fs, 1)
        
        # reduction of the measurement error matrix
        meas_var = m_error[:, cs]
        
        if normalisation:
            # detrending at all steps, one location
            local_average = np.average(reduced_records, 1).reshape(
                                                    [len(reduced_records), 1])
            reduced_records = reduced_records - local_average
            
        reduced_cov_matrix = record_covariance_matrix[:]
        reduced_cov_matrix = np.delete(reduced_cov_matrix,
                                       fs, 0)
        reduced_cov_matrix = np.delete(reduced_cov_matrix, 
                                       fs, 1)
        
        # Kriging interpolation
        TempRes = _kriging_core(ModOpt, targets[kk], RedLoc, candidate_sv, 
                                xopt, reduced_cov_matrix, reduced_records, 
                                krig_type, meas_var)
        if Z == []:
            if normalisation:
                Z = np.vstack(TempRes[0]) + local_average
            else:
                Z = np.vstack(TempRes[0]) 
            
        else:
            if normalisation:
                temp = np.vstack(TempRes[0]) + local_average
            else:            
                temp = np.vstack(TempRes[0])
                
            Z = np.hstack((Z, temp))
        SP.append(TempRes[1])

    ZAvg = np.average(Z, 1)
    
    SP = np.array(SP)
    SP[SP < 0] = 0
    return Z, SP, ZAvg
Ejemplo n.º 3
0
def multi_variogram(data, stations, bp, 
                    candidate_var=[variogram_fit.spherical_sv,],
                    candidate_tag=['Spherical',]):
    '''   
    Calculates the object with multiple semivariograms of the data at different
    breaking points
    
    Parameters:
    -----------
    data : nd_array
        Array containing the measurements all the measurements of the variable
        on sze '[n, m]'. n is the number of measurements, m the number of 
        stations        
    stations : nd_array
        Array containing the location of stations. The size of the array is of 
        '[m, 2]'
    bp : list
        List with the sections of the data to create the pools. Do not include
        values equal to the maximum or minimum of the data.
    
    returns:
    --------
    
    xopt : nd_array
        3 dimensional array consisting of station index, condition index and
        variogram parameters
        
    mod_opt_st : nd_array
        3 dimensional array consisting of station index, condition index and 
        optimal model output
    '''
    #Make n variograms as breaking points in the location of the sensors
    # bp has to in ascending order
    bp = bp[:]
    bp.insert(0, np.min(data))
    bp.append(np.max(data))
    intervals = [[bp[i], bp[i+1]] for i in xrange(len(bp)-1)]
    intervals[-1][1] = intervals[-1][1]+0.0001
    
    x_opt_st = []
    mod_opt_st = []    
    
    # iterate over the stations
    for s_idx in xrange(len(stations)):
        # gest distance of station towards the other stations
        dist_to_stations = dist.target(stations, [stations[s_idx], ])
        
        # Iterate over the intervals of precipitation
        x_opt_db = []
        mod_opt_db = []
        for interval in intervals:
            # Go throgh data to get variogram for each condition at each station
            # Make the pool for the SV            
            temp_pool = []            
            for i in xrange(len(data)):
                if data[i, s_idx] >= min(interval) and \
                   data[i, s_idx] < max(interval):
                    temp_pool.append(data[i, :])
            
            # Raise error if pool is empty 
            if temp_pool == []:
                raise NameError('Pool is empty: no data at station {0} \
                on interval {1}. Pick new breaking points'.format(s_idx, 
                                                                  interval))            
            temp_pool = np.array(temp_pool)

            # get experimental variogram for the pool
            temp_cov_matrix = np.cov(np.transpose(temp_pool))
            reg_interval, reg_cov = _regul(np.transpose(dist_to_stations), 
                                                   temp_cov_matrix[:,s_idx], 
                                                    15, 1)
            
            temp_exp_sv = np.transpose(np.vstack((reg_interval, reg_cov)))
            
            # fit to get theoretical SV
            x_opt, mod_opt, _ = theor_variogram(temp_exp_sv,
                                              candidate_sv=candidate_var,
                                              candidate_sv_tag=candidate_tag,
                                              Sb = (0.01, 6.0),
                                              Rb = (5.00, 45.0),
                                              Nb = (0.001, 0.05))
            # save results
            x_opt_db.append(x_opt)
            mod_opt_db.append(mod_opt)
            print ('Variogram fitted for interval {0} at {1}'.format(interval, 
                                                                     ctime()))
        
        x_opt_st.append(x_opt_db)
        mod_opt_st.append(mod_opt_db)
    
    x_opt_st = np.array(x_opt_st)
    mod_opt_st = np.array(mod_opt_st)
    return x_opt_st, mod_opt_st
Ejemplo n.º 4
0
def _kriging_core(ModOpt, single_target, stations, candidate_sv, xopt, 
                  record_covariance_matrix, records, krig_type, meas_var):
    '''
    Kriging core where interpolating algorithms is taking place.
    
    Parameters
    ----------
        **ModOpt** -- Pointer to optimal semivariogram model \n
        **single_target** -- Single point of interest to interpolate (targets)\
            ``[t,2]`` \n
        **stations** -- Gauge location for interpolation ``[x,2]`` \n
        **candidate_sv** -- Array with pointer to functions in variogram_fit module
            \n
        **xopt** -- vector with optimal semivariogram parameters ``[5]`` \n
        **record_covariance_matrix** -- Gauge records covariance matrix ``[x,x]`` \n
        **records** -- Precipitation register for gauges ``[n,x]`` \n
        **krig_type** -- Type of Kriging to be used. 'Sim' for Simple and 'Ord'\
            for Ordinary Kriging
    
    Returns
    -------
        **Z** -- Interpolation for each target and time step ``[n,1]`` \n
        **SP** -- Interpolation variance field ``[1]``\n
    '''
    n_stations = len(stations)
    targetsD = dist.target(stations, [single_target])[0]
    SVm = []
    for j in xrange(len(stations)):
        SVm.append(candidate_sv[ModOpt](targetsD[j], xopt))
        
    # fix covariance matrix so not having negative eigenvalues
    record_covariance_matrix = near_psd(record_covariance_matrix)
    
    if krig_type is 'Ord':  #Ordinary Kriging
        
        record_covariance_matrix = np.row_stack((record_covariance_matrix,
                                    np.ones(len(record_covariance_matrix))))
        record_covariance_matrix = np.column_stack((record_covariance_matrix,
                                    np.ones(len(record_covariance_matrix))))
        record_covariance_matrix[-1,-1] = 0.0
        SVm.append(1.0)
        
        SVr = np.array(record_covariance_matrix)
        if linalg.det(record_covariance_matrix) == 0:
            print('Non-singular covriance matrix - Sorry, cannot invert \n')
            err_out = ERROR_CODE*np.ones(len(records)) 
            return err_out, err_out
        
        if np.max(meas_var) == 0:
            Z = []
            InvSVr = linalg.inv(SVr)
            WM= np.dot(InvSVr,SVm)
          
            for i in xrange(len(records)):               
                Ztemp = np.dot(WM[:-1], records[i])
                Z.append(Ztemp)        
                
            S = SVm[:-1]
            SP = xopt[0] - (np.dot(WM[:-1], np.transpose(S))) - WM[-1]
            
        else:
            Z = []
            for i in xrange(len(records)):
                records_i = records[i]
                add_var_mat = np.zeros([n_stations + 1, n_stations + 1])
                # generate added measurement covariance  matrix
                add_var_mat[:-1, :-1] = np.array([[np.sqrt(meas_var[i, j]*meas_var[i, k]) 
                                               for j in xrange(n_stations)] 
                                               for k in xrange(n_stations)])
                
                add_var_vec = np.zeros([n_stations + 1])
                add_var_vec[:-1] = np.array([np.sqrt(meas_var[i, j]) for j in xrange(n_stations)])

                #augmented variance matrix with measurement noise (trimmed)
                SVr_mod = np.clip(SVr - add_var_mat, 0, np.inf)
                
                # Augmented variance towards target (trimmed)
                SVm_mod = np.clip(SVm - add_var_vec, 0, np.inf)
                
                # Check for colinearity of the solutions and remove the non-necessary
                coll_vars = [j for j in xrange(len(SVr_mod)-1) if np.max(SVr_mod[:, j]) == 0]
                
                if coll_vars != []:
                    # Remove from covariance matrix
                    SVr_mod = np.delete(SVr_mod, coll_vars, 0)
                    SVr_mod = np.delete(SVr_mod, coll_vars, 1)
                    
                    # remove from variance to vector
                    SVm_mod = np.delete(SVm_mod, coll_vars, 0)
                    
                    # remove from records used
                    records_i = np.delete(records_i, coll_vars, 0)

                # Get the weights
                InvSVr = linalg.inv(SVr_mod)
                WM= np.dot(InvSVr, SVm_mod)
                
                Ztemp = np.dot(WM[:-1], records[i])
                #Ztemp = np.clip(Ztemp, 0, max(records[i])) # cutoff at 0 and max prec
                Z.append(Ztemp)
                
            S = SVm_mod[:-1]
            SP = xopt[0] - (np.dot(WM[:-1], np.transpose(S))) - WM[-1]
            
        
    elif krig_type is 'Sim':  # Simple Kriging
    
        SVr = np.array(record_covariance_matrix)        
        if linalg.det(record_covariance_matrix) == 0:
            print('Non-singular covriance matrix - Sorry, cannot invert \n')
            err_out = ERROR_CODE*np.ones(len(records))
            return err_out, err_out
        if np.max(meas_var) == 0:
            InvSVr = linalg.inv(SVr) 
            WM= np.dot(InvSVr, SVm)  
            Z = []        
            for i in xrange(len(records)):
                Ztemp = np.dot(WM, records[i])
                Z.append(Ztemp)        
            S = SVm
            SP = xopt[0] - (np.dot(WM, np.transpose(SVm)))
            
        else:
            Z = []
            for i in xrange(len(records)):
                records_i = records[i]
                # generate added measurement covariance  matrix
                add_var_mat = np.array([[np.sqrt(meas_var[i, j]*meas_var[i, k]) 
                                               for j in xrange(n_stations)] 
                                               for k in xrange(n_stations)])
                
                add_var_vec = np.array([np.sqrt(meas_var[i, j]) for j in xrange(n_stations)])

                #augmented variance matrix with measurement noise (trimmed)
                SVr_mod = np.clip(SVr - add_var_mat, 0, np.inf)
                
                # Augmented variance towards target (trimmed)
                SVm_mod = np.clip(SVm - add_var_vec, 0, np.inf)

                # Check for colinearity of the solutions and remove the non-necessary
                coll_vars = [j for j in xrange(len(SVr_mod)) if np.max(SVr_mod[:, j]) == 0]
                
                if coll_vars != []:
                    # Remove from covariance matrix
                    SVr_mod = np.delete(SVr_mod, coll_vars, 0)
                    SVr_mod = np.delete(SVr_mod, coll_vars, 1)
                    
                    # remove from variance to vector
                    SVm_mod = np.delete(SVm_mod, coll_vars, 0)
                    
                    # remove from records used
                    records_i = np.delete(records_i, coll_vars, 0)
                
                # Get the weights
                InvSVr = linalg.inv(SVr_mod)
                WM= np.dot(InvSVr, SVm_mod)
                
                Ztemp = np.dot(WM, records_i)
                Z.append(Ztemp)        
            S = SVm
            SP = xopt[0] - (np.dot(WM, np.transpose(SVm_mod)))
    
    else:
        print 'I pity the fool for no chosing Kriging type'
        print 'only available Ord and Sim \n'
        Z = ERROR_CODE*np.ones(len(records))
        SP = ERROR_CODE*np.ones(len(records))
    
    return Z, SP
Ejemplo n.º 5
0
def ns_kriging_mm(data,
                  stations,
                  bp,
                  x_opt_st,
                  mod_opt_st,
                  targets,
                  candidate_var=[
                      variogram_fit.spherical_sv,
                  ],
                  candidate_tag=[
                      'Spherical',
                  ],
                  verbose=False,
                  ncs=3,
                  krig_type='Ord'):
    '''
    t1_var : list
        Parameters of the tier 1 variogram (variogram of the kriging 
        parameters) to be interpolated at each interval
        
    the method uses Ordinary Kriging using multi-precipitation model
    '''
    if krig_type is 'Ord':
        ord_krig = True

    # Set the intervals
    bp = bp[:]
    bp.insert(0, np.min(data))
    bp.append(np.max(data))
    intervals = [[bp[i], bp[i + 1]] for i in xrange(len(bp) - 1)]
    intervals[-1][1] = intervals[-1][1] + 0.0001

    # Make separation of the regime for each record
    cond_map = np.zeros_like(data)
    for st_i in xrange(len(stations)):
        for n in xrange(len(data)):
            for i in xrange(len(intervals)):
                if data[n, st_i] >= min(intervals[i]) and \
                   data[n, st_i] < max(intervals[i]):
                    cond_map[n, st_i] = i

    # Get distance between stations
    dist_mat = np.array(dist.between(stations))

    #initialisation of lists for each target
    zz = np.zeros([len(data), len(targets)])
    ssp = np.zeros([len(data), len(targets)])

    for tarcoun in xrange(len(targets)):

        #Select invidual target for itnerpolation
        tar = targets[tarcoun]

        ##Select the closest NCS elements
        #Calculate distance of all stations
        das = np.array(dist.target([
            tar,
        ], stations)).flatten()

        #Select index of the closest stations
        cs = list(das.argsort()[:ncs])

        #Reduction of precipitation and sensor position matrices
        red_data = data[:, cs]
        red_dist = dist_mat[cs][:, cs]
        red_cond_map = cond_map[:, cs]
        red_xopt = x_opt_st[cs]

        # Pre-cooked all zeros case
        if ord_krig:
            cov_mat_zeros = np.ones([ncs + 1, ncs + 1])
            cov_mat_zeros[-1, -1] = 0
        else:
            cov_mat_zeros = np.ones([ncs, ncs])

        for ii in xrange(ncs):
            for jj in xrange(ncs):
                # TODO include different variogram type where 0 is
                cov_mat_zeros[ii, jj] = candidate_var[0](red_dist[ii, jj],
                                                         red_xopt[ii, 0])

        if ord_krig:
            cov_tar_zeros = np.ones([ncs + 1, 1])
        else:
            cov_tar_zeros = np.ones([ncs, 1])

        for ii in xrange(ncs):
            cov_tar_zeros[ii, 0] = candidate_var[0](das[cs[ii]], red_xopt[ii,
                                                                          0])

        # Inverse of extended covariance matrix
        inv_cov_mat_zeros = np.linalg.inv(cov_mat_zeros)

        # Kriging weights
        w_vec = np.dot(inv_cov_mat_zeros, cov_tar_zeros)

        # Interpolation variance and Kriging system solution
        if ord_krig:
            sp_zeros = (np.max(cov_mat_zeros) -
                        (np.sum(w_vec * cov_tar_zeros + w_vec[-1][0])))
        else:
            sp_zeros = (np.max(cov_mat_zeros) -
                        (np.dot(np.transpose(w_vec), cov_tar_zeros)[0][0]))

        for t in xrange(len(data)):

            # If there is some precipitation data
            if np.max(red_data[t, :]) != 0:
                ## Here the interpolation is made for each of the time steps at
                ## each locatiom
                #Make covariance matrix between stations in the neighborhoud (K)
                if ord_krig:
                    cov_mat = np.ones([ncs + 1, ncs + 1])
                    cov_mat[-1, -1] = 0
                else:
                    cov_mat = np.ones([ncs, ncs])

                # Construct Covariance Matrix between stations
                # for each precipitation event
                for ii in xrange(ncs):
                    for jj in xrange(ncs):
                        # TODO include different variogram type where 0 is
                        cov_mat[ii, jj] = candidate_var[0](
                            red_dist[ii, jj], red_xopt[ii,
                                                       int(red_cond_map[t,
                                                                        ii])])

                # Fix maximum diagonal element to maximum of the variogram
                # To force positive eigenvalues
                for ii in xrange(ncs):
                    cov_mat[ii, ii] = np.max(cov_mat)

                # Simmetrise using the average bi-directional covariance matrix
                cov_mat = 0.5 * (cov_mat + np.transpose(cov_mat))

                # Construct covariance towards target
                if ord_krig:
                    cov_tar = np.ones([ncs + 1, 1])
                else:
                    cov_tar = np.ones([ncs, 1])

                for ii in xrange(ncs):
                    cov_tar[ii, 0] = candidate_var[0](
                        das[cs[ii]], red_xopt[ii, int(red_cond_map[t, ii])])

                ## Solve the Kriging system
                # Invert the covariance matrix
                inv_cov_mat = np.linalg.inv(cov_mat)

                # Kriging weights
                w_vec = np.dot(inv_cov_mat, cov_tar)

                # Interpolation variance and Kriging system solution
                if ord_krig:
                    z_temp = np.dot(np.transpose(w_vec[:-1]),
                                    np.reshape(red_data[t, :], [-1, 1]))[0][0]
                    #sp_temp = (np.max(cov_mat)
                    #           - (np.sum(w_vec * cov_tar + w_vec[-1][0])))
                    sp_temp = (np.max(cov_mat) -
                               (np.sum(w_vec * cov_tar) + w_vec[-1][0]))
                else:
                    z_temp = np.dot(np.transpose(w_vec),
                                    np.reshape(red_data[t, :], [-1, 1]))[0][0]
                    sp_temp = np.max(cov_mat) - (np.sum(w_vec * cov_tar))

                # Appending of solutions
                ssp[t, tarcoun] = sp_temp
                zz[t, tarcoun] = z_temp

            else:
                ssp[t, tarcoun] = sp_zeros
                zz[t, tarcoun] = 0

            if verbose:
                print('Finished step {0}/{1} at {2}'.format(
                    n, len(data), ctime()))

    return zz, ssp
Ejemplo n.º 6
0
def multi_variogram(data,
                    stations,
                    bp,
                    candidate_var=[
                        variogram_fit.spherical_sv,
                    ],
                    candidate_tag=[
                        'Spherical',
                    ]):
    '''   
    Calculates the object with multiple semivariograms of the data at different
    breaking points
    
    Parameters:
    -----------
    data : nd_array
        Array containing the measurements all the measurements of the variable
        on sze '[n, m]'. n is the number of measurements, m the number of 
        stations        
    stations : nd_array
        Array containing the location of stations. The size of the array is of 
        '[m, 2]'
    bp : list
        List with the sections of the data to create the pools. Do not include
        values equal to the maximum or minimum of the data.
    
    returns:
    --------
    
    xopt : nd_array
        3 dimensional array consisting of station index, condition index and
        variogram parameters
        
    mod_opt_st : nd_array
        3 dimensional array consisting of station index, condition index and 
        optimal model output
    '''
    #Make n variograms as breaking points in the location of the sensors
    # bp has to in ascending order
    bp = bp[:]
    bp.insert(0, np.min(data))
    bp.append(np.max(data))
    intervals = [[bp[i], bp[i + 1]] for i in xrange(len(bp) - 1)]
    intervals[-1][1] = intervals[-1][1] + 0.0001

    x_opt_st = []
    mod_opt_st = []

    # iterate over the stations
    for s_idx in xrange(len(stations)):
        # gest distance of station towards the other stations
        dist_to_stations = dist.target(stations, [
            stations[s_idx],
        ])

        # Iterate over the intervals of precipitation
        x_opt_db = []
        mod_opt_db = []
        for interval in intervals:
            # Go throgh data to get variogram for each condition at each station
            # Make the pool for the SV
            temp_pool = []
            for i in xrange(len(data)):
                if data[i, s_idx] >= min(interval) and \
                   data[i, s_idx] < max(interval):
                    temp_pool.append(data[i, :])

            # Raise error if pool is empty
            if temp_pool == []:
                raise NameError('Pool is empty: no data at station {0} \
                on interval {1}. Pick new breaking points'.format(
                    s_idx, interval))
            temp_pool = np.array(temp_pool)

            # get experimental variogram for the pool
            temp_cov_matrix = np.cov(np.transpose(temp_pool))
            reg_interval, reg_cov = _regul(np.transpose(dist_to_stations),
                                           temp_cov_matrix[:, s_idx], 15, 1)

            temp_exp_sv = np.transpose(np.vstack((reg_interval, reg_cov)))

            # fit to get theoretical SV
            x_opt, mod_opt, _ = theor_variogram(temp_exp_sv,
                                                candidate_sv=candidate_var,
                                                candidate_sv_tag=candidate_tag,
                                                Sb=(0.01, 6.0),
                                                Rb=(5.00, 45.0),
                                                Nb=(0.001, 0.05))
            # save results
            x_opt_db.append(x_opt)
            mod_opt_db.append(mod_opt)
            print('Variogram fitted for interval {0} at {1}'.format(
                interval, ctime()))

        x_opt_st.append(x_opt_db)
        mod_opt_st.append(mod_opt_db)

    x_opt_st = np.array(x_opt_st)
    mod_opt_st = np.array(mod_opt_st)
    return x_opt_st, mod_opt_st
Ejemplo n.º 7
0
def krig(MaxDist,
         targets,
         stations,
         records,
         record_covariance_matrix,
         ModOpt,
         xopt,
         candidate_sv,
         tmin=0,
         tmax='def',
         MinNumSt='def',
         krig_type='Sim',
         normalisation=False,
         m_error=None):
    '''
    Parsing of data for Kriging interpolation. This function contains\
    execution of interpolation as well. \n
    Parameters
    ----------
        **MaxDist** -- Initial search radius for nearby stations \n
        **targets** -- Points of interest to interpolate (targets) ``[t,2]`` \n
        **stations** -- Gauge location for interpolation ``[x,2]`` \n
        **records** -- Precipitation register for gauges ``[n,x]`` \n
        **record_covariance_matrix** -- Gauge records covariance matrix ``[x,x]`` \n
        **ModOpt** -- pointer to optimal semivariogram model \n
        **xopt** -- vector with optimal semivariogram parameters ``[5]`` \n
        **candidate_sv** -- Array with pointer to functions in variogram_fit module
            \n
        **tmin** -- Initial time step to be interpolated \n
        **tmax** -- Final time step to be interpolated \n
        **MinNumSt** -- Minimum number of stations within the search radius \n
        **krig_type** -- Type of Kriging to be used. 'Sim' for Simple and 'Ord'\
            for Ordinary Kriging
        **normalisation** -- Boolean. If true, then the variable is normalised\
             in the neighbourhood of the variable
        **m_error -- cotains the variance in the measurement error
            
    
    Returns
    -------
        **Z** -- Interpolation for each target and time step ``[n,t]`` \n
        **SP** -- Interpolation variance field ``[t,1]``\n
        **ZAvg** -- Average of interpolated field ``[n,1]``
    '''
    #print (MinNumSt)
    if MinNumSt is 'def':
        MinNumSt = len(stations)

    if MinNumSt >= len(stations):
        print('Number of stations should be larger than number of \
               minimum stations. Set to all stations')
        MinNumSt = len(stations)

    if tmax == 'def':
        tmax = len(records)
    tmin = int(tmin)
    tmax = int(tmax)
    PrecSec = records[tmin:tmax]

    if m_error is None:
        m_error = np.zeros([len(PrecSec), len(stations)])
    else:
        m_error = m_error[tmin:tmax]

    # Reduce measurements to relevant locations for the targets
    Z = []
    SP = []
    for kk in xrange(len(targets)):
        # Check if there are enough stations for interpolation, otherwise,
        # increase search radius
        #targets_dt = dist.target(stations, [targets[kk]])[0]
        #TNS = 0
        #MaxDist2 = MaxDist
        das = np.array(dist.target([
            targets[kk],
        ], stations)).flatten()

        #Select index of the closest stations
        cs = list(das.argsort()[:MinNumSt])
        fs = list(das.argsort()[MinNumSt:])
        selected_stations = stations[cs]

        # Reduction of relevant stations (reduced data and cov matrices)
        RedLoc = np.delete(stations, fs, 0)
        reduced_records = np.delete(PrecSec, fs, 1)

        # reduction of the measurement error matrix
        meas_var = m_error[:, cs]

        if normalisation:
            # detrending at all steps, one location
            local_average = np.average(reduced_records,
                                       1).reshape([len(reduced_records), 1])
            reduced_records = reduced_records - local_average

        reduced_cov_matrix = record_covariance_matrix[:]
        reduced_cov_matrix = np.delete(reduced_cov_matrix, fs, 0)
        reduced_cov_matrix = np.delete(reduced_cov_matrix, fs, 1)

        # Kriging interpolation
        TempRes = _kriging_core(ModOpt, targets[kk], RedLoc, candidate_sv,
                                xopt, reduced_cov_matrix, reduced_records,
                                krig_type, meas_var)
        if Z == []:
            if normalisation:
                Z = np.vstack(TempRes[0]) + local_average
            else:
                Z = np.vstack(TempRes[0])

        else:
            if normalisation:
                temp = np.vstack(TempRes[0]) + local_average
            else:
                temp = np.vstack(TempRes[0])

            Z = np.hstack((Z, temp))
        SP.append(TempRes[1])

    ZAvg = np.average(Z, 1)

    SP = np.array(SP)
    SP[SP < 0] = 0
    return Z, SP, ZAvg
Ejemplo n.º 8
0
def _kriging_core(ModOpt, single_target, stations, candidate_sv, xopt,
                  record_covariance_matrix, records, krig_type, meas_var):
    '''
    Kriging core where interpolating algorithms is taking place.
    
    Parameters
    ----------
        **ModOpt** -- Pointer to optimal semivariogram model \n
        **single_target** -- Single point of interest to interpolate (targets)\
            ``[t,2]`` \n
        **stations** -- Gauge location for interpolation ``[x,2]`` \n
        **candidate_sv** -- Array with pointer to functions in variogram_fit module
            \n
        **xopt** -- vector with optimal semivariogram parameters ``[5]`` \n
        **record_covariance_matrix** -- Gauge records covariance matrix ``[x,x]`` \n
        **records** -- Precipitation register for gauges ``[n,x]`` \n
        **krig_type** -- Type of Kriging to be used. 'Sim' for Simple and 'Ord'\
            for Ordinary Kriging
    
    Returns
    -------
        **Z** -- Interpolation for each target and time step ``[n,1]`` \n
        **SP** -- Interpolation variance field ``[1]``\n
    '''
    n_stations = len(stations)
    targetsD = dist.target(stations, [single_target])[0]
    SVm = []
    for j in xrange(len(stations)):
        SVm.append(candidate_sv[ModOpt](targetsD[j], xopt))

    # fix covariance matrix so not having negative eigenvalues
    record_covariance_matrix = near_psd(record_covariance_matrix)

    if krig_type is 'Ord':  #Ordinary Kriging

        record_covariance_matrix = np.row_stack(
            (record_covariance_matrix, np.ones(len(record_covariance_matrix))))
        record_covariance_matrix = np.column_stack(
            (record_covariance_matrix, np.ones(len(record_covariance_matrix))))
        record_covariance_matrix[-1, -1] = 0.0
        SVm.append(1.0)

        SVr = np.array(record_covariance_matrix)
        if linalg.det(record_covariance_matrix) == 0:
            print('Non-singular covriance matrix - Sorry, cannot invert \n')
            err_out = ERROR_CODE * np.ones(len(records))
            return err_out, err_out

        if np.max(meas_var) == 0:
            Z = []
            InvSVr = linalg.inv(SVr)
            WM = np.dot(InvSVr, SVm)

            for i in xrange(len(records)):
                Ztemp = np.dot(WM[:-1], records[i])
                Z.append(Ztemp)

            S = SVm[:-1]
            SP = xopt[0] - (np.dot(WM[:-1], np.transpose(S))) - WM[-1]

        else:
            Z = []
            for i in xrange(len(records)):
                records_i = records[i]
                add_var_mat = np.zeros([n_stations + 1, n_stations + 1])
                # generate added measurement covariance  matrix
                add_var_mat[:-1, :-1] = np.array([[
                    np.sqrt(meas_var[i, j] * meas_var[i, k])
                    for j in xrange(n_stations)
                ] for k in xrange(n_stations)])

                add_var_vec = np.zeros([n_stations + 1])
                add_var_vec[:-1] = np.array(
                    [np.sqrt(meas_var[i, j]) for j in xrange(n_stations)])

                #augmented variance matrix with measurement noise (trimmed)
                SVr_mod = np.clip(SVr - add_var_mat, 0, np.inf)

                # Augmented variance towards target (trimmed)
                SVm_mod = np.clip(SVm - add_var_vec, 0, np.inf)

                # Check for colinearity of the solutions and remove the non-necessary
                coll_vars = [
                    j for j in xrange(len(SVr_mod) - 1)
                    if np.max(SVr_mod[:, j]) == 0
                ]

                if coll_vars != []:
                    # Remove from covariance matrix
                    SVr_mod = np.delete(SVr_mod, coll_vars, 0)
                    SVr_mod = np.delete(SVr_mod, coll_vars, 1)

                    # remove from variance to vector
                    SVm_mod = np.delete(SVm_mod, coll_vars, 0)

                    # remove from records used
                    records_i = np.delete(records_i, coll_vars, 0)

                # Get the weights
                InvSVr = linalg.inv(SVr_mod)
                WM = np.dot(InvSVr, SVm_mod)

                Ztemp = np.dot(WM[:-1], records[i])
                #Ztemp = np.clip(Ztemp, 0, max(records[i])) # cutoff at 0 and max prec
                Z.append(Ztemp)

            S = SVm_mod[:-1]
            SP = xopt[0] - (np.dot(WM[:-1], np.transpose(S))) - WM[-1]

    elif krig_type is 'Sim':  # Simple Kriging

        SVr = np.array(record_covariance_matrix)
        if linalg.det(record_covariance_matrix) == 0:
            print('Non-singular covriance matrix - Sorry, cannot invert \n')
            err_out = ERROR_CODE * np.ones(len(records))
            return err_out, err_out
        if np.max(meas_var) == 0:
            InvSVr = linalg.inv(SVr)
            WM = np.dot(InvSVr, SVm)
            Z = []
            for i in xrange(len(records)):
                Ztemp = np.dot(WM, records[i])
                Z.append(Ztemp)
            S = SVm
            SP = xopt[0] - (np.dot(WM, np.transpose(SVm)))

        else:
            Z = []
            for i in xrange(len(records)):
                records_i = records[i]
                # generate added measurement covariance  matrix
                add_var_mat = np.array([[
                    np.sqrt(meas_var[i, j] * meas_var[i, k])
                    for j in xrange(n_stations)
                ] for k in xrange(n_stations)])

                add_var_vec = np.array(
                    [np.sqrt(meas_var[i, j]) for j in xrange(n_stations)])

                #augmented variance matrix with measurement noise (trimmed)
                SVr_mod = np.clip(SVr - add_var_mat, 0, np.inf)

                # Augmented variance towards target (trimmed)
                SVm_mod = np.clip(SVm - add_var_vec, 0, np.inf)

                # Check for colinearity of the solutions and remove the non-necessary
                coll_vars = [
                    j for j in xrange(len(SVr_mod))
                    if np.max(SVr_mod[:, j]) == 0
                ]

                if coll_vars != []:
                    # Remove from covariance matrix
                    SVr_mod = np.delete(SVr_mod, coll_vars, 0)
                    SVr_mod = np.delete(SVr_mod, coll_vars, 1)

                    # remove from variance to vector
                    SVm_mod = np.delete(SVm_mod, coll_vars, 0)

                    # remove from records used
                    records_i = np.delete(records_i, coll_vars, 0)

                # Get the weights
                InvSVr = linalg.inv(SVr_mod)
                WM = np.dot(InvSVr, SVm_mod)

                Ztemp = np.dot(WM, records_i)
                Z.append(Ztemp)
            S = SVm
            SP = xopt[0] - (np.dot(WM, np.transpose(SVm_mod)))

    else:
        print 'I pity the fool for no chosing Kriging type'
        print 'only available Ord and Sim \n'
        Z = ERROR_CODE * np.ones(len(records))
        SP = ERROR_CODE * np.ones(len(records))

    return Z, SP