Ejemplo n.º 1
0
def test_quantile_out_of_bouns():
    h = distogram.Distogram()

    for i in [1, 2, 3, 4, 5, 6, 6.7, 6.1]:
        h = distogram.update(h, i)

    assert distogram.quantile(h, -0.2) is None
    assert distogram.quantile(h, 10) is None
Ejemplo n.º 2
0
def test_quantile_on_right():
    h = distogram.Distogram(bin_count=6)

    data = [12.3, 8.2, 100.53, 23.5, 13.98, 200, 200.2, 200.8, 200.4, 200.1]
    for i in data:
        h = distogram.update(h, i)

    assert distogram.quantile(h, 0.99) == approx(np.quantile(data, 0.99),
                                                 rel=0.01)
    assert distogram.quantile(h, 0.85) == approx(np.quantile(data, 0.85),
                                                 rel=0.01)
Ejemplo n.º 3
0
def test_normal():
    # normal = np.random.normal(0,1, 1000)
    normal = [random.normalvariate(0.0, 1.0) for _ in range(10000)]
    h = distogram.Distogram(bin_count=64)

    for i in normal:
        h = distogram.update(h, i)

    assert distogram.quantile(h, 0.5) == approx(np.quantile(normal, 0.5),
                                                abs=0.2)
    assert distogram.quantile(h, 0.95) == approx(np.quantile(normal, 0.95),
                                                 abs=0.2)
Ejemplo n.º 4
0
def test_quantile_on_left():
    h = distogram.Distogram(bin_count=6)

    data = [12.3, 5.2, 5.4, 4.9, 5.5, 5.6, 8.2, 30.53, 23.5, 13.98]
    for i in data:
        h = distogram.update(h, i)

    assert distogram.quantile(h, 0.01) == approx(np.quantile(data, 0.01),
                                                 rel=0.01)
    assert distogram.quantile(h, 0.05) == approx(np.quantile(data, 0.05),
                                                 rel=0.05)
    assert distogram.quantile(h, 0.25) == approx(np.quantile(data, 0.25),
                                                 rel=0.05)
Ejemplo n.º 5
0
def test_quantile():
    h = distogram.Distogram(bin_count=3)
    h = distogram.update(h, 16, count=4)
    h = distogram.update(h, 23, count=3)
    h = distogram.update(h, 28, count=5)

    assert distogram.quantile(h, 0.5) == approx(23.625)
Ejemplo n.º 6
0
def test_quantile_not_enough_elemnts():
    h = distogram.Distogram(bin_count=10)

    for i in [12.3, 5.4, 8.2, 100.53, 23.5, 13.98]:
        h = distogram.update(h, i)

    assert distogram.quantile(h, 0.5) == approx(13.14)
Ejemplo n.º 7
0
def quantile(value):
    '''Returns a quantile value of the distribution.

    The source can be an Observable or a MuxObservable.

    Args:
        value: The quantile value to compute, between 0 and 1.

    Returns:
        An observable emitting the quantile value of each source items.
    '''
    return rx.pipe(rs.ops.map(lambda i: distogram.quantile(i, value)))
Ejemplo n.º 8
0
def test_quantile_empty():
    h = distogram.Distogram()

    assert distogram.quantile(h, 0.3) is None