def predict(self, X, out: str = 'latent'):
     """
     Predict out:
         'latent'        : E[y* | X]
         'censored'      : E[y | X]
         'truncated'     : E[y | y>0,X]
         'P(censored)'   : P(y=0 | X)
         'P(uncensored)' : P(y>0 | X)
     """
     beta, sigma = self.theta[0:len(self.theta) - 1], self.theta[-1]
     normal = distributions.Normal(mu=0, sigma=1)
     XB = self.X @ beta
     cdf_eval, pdf_eval = normal.cdf(XB / sigma), normal.pdf(XB / sigma)
     if out == 'latent':
         return XB
     elif out == 'censored':
         return XB * cdf_eval + sigma * pdf_eval
     elif out == 'truncated':
         return XB + sigma * (pdf_eval / cdf_eval)
     elif out == 'P(censored)':
         return 1 - cdf_eval
     elif out == 'P(uncensored)':
         return cdf_eval
     else:
         raise ValueError(
             '"out" argument must be one of ["latent", "censored", "truncated", "P(censored)", "P(uncensored)"]'
         )
Ejemplo n.º 2
0
    def __init__(self, init, data, init_proposal_sd, prior=None):
        self.state = init
        self.data = data

        if prior is None:
            self.prior = dist.Normal(0, 10)

        self.tuners = StateTuner(init_proposal_sd)
def set_target_dist(dist_type, thetas, rewards):
	if dist_type == 'Normal':
		return distributions.Normal(thetas)
	elif dist_type == 'Bandit':
		return distributions.BanditDistribution(thetas, rewards)
	else:
		print('Unsupported Arguments Types.')
		exit()
Ejemplo n.º 4
0
def sample_std_normal(n, seed=1):
    np.random.seed(seed)
    tuner = mcmc.Tuner(1.0)
    xs = np.zeros(n)
    x = 0.0
    for b in range(n):
        x = mcmc.ametropolis(x, dist.Normal(0, 1).lpdf, tuner)
        # x = mcmc.ametropolis(x, lpdf_std_normal, tuner) # faster
        xs[b] = x
    return xs
 def objective_function(self, theta: np.ndarray):
     """
     negative log likelihood
     theta: {beta, sigma}
     """
     beta, sigma = theta[0:len(theta) - 1], theta[-1]
     normal = distributions.Normal(mu=0, sigma=1)
     XB = self.X @ beta
     f_0 = (self.y == 0) * np.log(1 - normal.cdf(XB / sigma))
     f_1 = (self.y > 0) * (
         (-1 / 2) * np.log(2 * np.pi) - np.log(sigma**2) / 2 -
         (self.y - XB)**2 / (2 * sigma**2))
     return (-1) * np.sum(
         f_0 + f_1, axis=0) / self.X.shape[0]  # sum log likelihood (meaned)
 def compute_marginal_effects(self,
                              X: np.ndarray,
                              theta: np.ndarray,
                              out: str = 'latent'):
     """
     Calculate marginal effects given X and theta
     out:
     'latent'    : dE[y*|X]/dx
     'censored'  : dE[y|X]/dx
     """
     if out == 'latent':
         return theta[0:len(theta) - 1]  # beta
     elif out == 'censored':
         beta, sigma = theta[0:len(theta) - 1], theta[-1]
         normal = distributions.Normal(mu=0, sigma=1)
         return normal.cdf((X @ beta) / sigma) * beta
     else:
         raise ValueError(
             'Input argument "out" must be either "latent" or "censored"')
    def hessian(self, theta: np.ndarray):
        """
        Compute and construct hessian at theta,
        the formulae found in Calzolari & Fiorentini 1993
        """
        beta, sigma = theta[0:len(theta) - 1], theta[-1]
        normal = distributions.Normal(mu=0, sigma=1)
        XB = self.X @ beta
        r = self.y - XB
        cdf_eval, pdf_eval = normal.cdf(XB / sigma), normal.pdf(XB / sigma)

        # Hessian blocks
        dL_dBdB = np.zeros(shape=(self.X.shape[1],
                                  self.X.shape[1]))  # (K x K), d^2L/dBdB'
        dL_dsdB = np.zeros(shape=(self.X.shape[1]))  # (K x 1), d^2L/ds^2dB'
        dL_dsds = np.zeros(shape=(1))  # (1 x 1), d^2L/d^2s^2
        for i in range(self.X.shape[0]):
            xixi = np.outer(self.X[i, :], self.X[i, :])  # (K x K)
            dL_dBdB += (-1) * (self.y[i] > 0) * (1 / sigma**2) * xixi - (
                self.y[i]
                == 0) * (1 / sigma) * (pdf_eval[i] / (1 - cdf_eval[i])**2) * (
                    (pdf_eval[i] / sigma) - (1 / sigma**2) *
                    (1 - cdf_eval[i]) * XB[i]) * xixi  # (K x K)
            dL_dsdB += (-1) * (self.y[i] > 0) * (
                1 / sigma**2) * r[i] * self.X[i, :] - (self.y[i] == 0) * (
                    1 /
                    (2 * sigma**3)) * (pdf_eval[i] / (1 - cdf_eval[i])**2) * (
                        (1 / sigma**2) * (1 - cdf_eval[i]) * XB[i]**2 -
                        (1 - cdf_eval[i]) - ((XB[i] * pdf_eval[i]) /
                                             sigma)) * self.X[i, :]  # (K x 1)
            dL_dsds += (-1) * (self.y[i] > 0) * (1 / sigma**6) * r[i]**2 - (
                self.y[i] == 0) * (1 / (4 * sigma**5)) * (
                    pdf_eval[i] / (1 - cdf_eval[i])**2) * (
                        (1 / sigma**2) * (1 - cdf_eval[i]) * (XB[i]**3) - 3 *
                        (1 - cdf_eval[i]) * (XB[i]) -
                        (XB[i] * pdf_eval[i] / sigma))  # (1 x 1)
        return np.concatenate((np.concatenate(
            (dL_dBdB, np.reshape(dL_dsdB, newshape=(-1, 1))), axis=1),
                               np.reshape(np.concatenate(
                                   (dL_dsdB, dL_dsds), axis=0),
                                          newshape=(1, -1))),
                              axis=0)
 def score(self, theta: np.ndarray):
     """
     Implement objective function derivative
     """
     beta, sigma = theta[0:len(theta) - 1], theta[-1]
     normal = distributions.Normal(mu=0, sigma=1)
     XB = self.X @ beta
     r = self.y - XB
     cdf_eval, pdf_eval = normal.cdf(XB / sigma), normal.pdf(XB / sigma)
     partial_beta = (1 / sigma**2) * np.sum(np.reshape(
         ((self.y > 0) * r - (self.y == 0) * ((sigma * pdf_eval) /
                                              (1 - cdf_eval))),
         newshape=(-1, 1)) * self.X,
                                            axis=0)  # (K x 1)
     partial_sigma = np.sum(
         (self.y > 0) * ((-1) / (2 * sigma**2) + r**2 /
                         (2 * sigma**4)) + (self.y == 0) * XB /
         (2 * sigma**3) * pdf_eval / (1 - cdf_eval))  # (1 x 1)
     #print('score: ', np.concatenate((partial_beta, np.atleast_1d(partial_sigma)), axis=0))
     return -np.concatenate((partial_beta, np.atleast_1d(partial_sigma)),
                            axis=0)  # the full score vector ((K+1) x 1)
    def outer_product(self, theta: np.ndarray):
        """
        Compute outer product of gradients at theta
        the formulae found in Calzolari & Fiorentini 1993
        """
        beta, sigma = theta[0:len(theta) - 1], theta[-1]
        normal = distributions.Normal(mu=0, sigma=1)
        XB = self.X @ beta
        r = self.y - XB
        cdf_eval, pdf_eval = normal.cdf(XB / sigma), normal.pdf(XB / sigma)

        # Outer Product blocks
        dL_dBdB = np.zeros(shape=(self.X.shape[1],
                                  self.X.shape[1]))  # (K x K), d^2L/dBdB'
        dL_dsdB = np.zeros(shape=(self.X.shape[1]))  # (K x 1), d^2L/ds^2dB'
        dL_dsds = np.zeros(shape=(1))  # (1 x 1), d^2L/d^2s
        for i in range(self.X.shape[0]):
            xixi = np.outer(self.X[i, :], self.X[i, :])  # (K x K)
            dL_dBdB += (-1) * (1 / sigma**2) * (pdf_eval[i] * (XB[i] / sigma) -
                                                (pdf_eval[i]**2 /
                                                 (1 - cdf_eval[i])) -
                                                cdf_eval[i]) * xixi
            dL_dsdB += (-1) * (1 / (2 * sigma**3)) * (
                pdf_eval[i] * (XB[i] / sigma)**2 + pdf_eval[i] -
                (pdf_eval[i]**2 /
                 (1 - cdf_eval[i])) * (XB[i] / sigma)) * self.X[i, :]
            dL_dsds += (-1) * (1 / (4 * sigma**4)) * (
                pdf_eval[i] * (XB[i] / sigma)**3 + pdf_eval[i] *
                (XB[i] / sigma) - (pdf_eval[i]**2 / (1 - cdf_eval[i])) *
                (XB[i] / sigma) - 2 * cdf_eval[i])
        return np.concatenate((np.concatenate(
            (dL_dBdB, np.reshape(dL_dsdB, newshape=(-1, 1))), axis=1),
                               np.reshape(np.concatenate(
                                   (dL_dsdB, dL_dsds), axis=0),
                                          newshape=(1, -1))),
                              axis=0)
Ejemplo n.º 10
0
import numba
import numpy as np
import mcmc
import distributions
from tqdm import trange

log_prob = lambda x: distributions.Normal(0, 1).lpdf(x)


def f(x, n=1e6):
    for i in trange(int(n)):
        x = mcmc.metropolis(x, log_prob, 1.0)
    print(x)


if __name__ == '__main__':
    f(1.0, 1)
    f(1.0)
Ejemplo n.º 11
0
def f(x, n):
    log_prob = distributions.Normal(0, 1).lpdf
    for _ in range(n):
        x = mcmc.metropolis(x, log_prob, 1.0)
    return x
Ejemplo n.º 12
0
def b2_prior():
    return dist.Normal(0, 10)